Skip to main content

Advertisement

Log in

A Review on Basic Biology of Bacterial Biofilm Infections and Their Treatments by Nanotechnology-Based Approaches

  • Review
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Biofilms are responsible for causing 80% of human infections including chronic infections like-cystic fibrosis, endocarditis and osteomyelitis. The growing ability of the biofilm to resist most of the available antibiotics has caused a serious threat to different life forms. Plenty of research work has already been reported, and some are ongoing to combat this serious health issue worldwide. Recent developments in nanotechnology have given a great boost in dealing biofilm infections. The unique size-dependent properties for antibacterial and antibiofilm activities provide the nanoparticles better options to eradicate biofilms. Here, the authors have discussed the basic biology of bacterial biofilm and their impact on human health. In addition, different nanotechnology-based strategies to overcome serious health issues caused by biofilm infections have been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Costerton JW (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322. https://doi.org/10.1126/science.284.5418.1318

    Article  CAS  PubMed  Google Scholar 

  2. O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54(1):49–79. https://doi.org/10.1146/annurev.micro.54.1.49

    Article  PubMed  Google Scholar 

  3. Romling U, Kjelleberg S, Normark S, Nyman L, Uhlin BE, Akerlund B (2014) Microbial biofilm formation: a need to act. J Intern Med 276(2):98–110. https://doi.org/10.1111/joim.12242

    Article  CAS  PubMed  Google Scholar 

  4. Wolcott RD, Rhoads DD, Bennett ME, Wolcott BM, Gogokhia L, Costerton JW, Dowd SE (2010) Chronic wounds and the medical biofilm paradigm. J Wound Care 19(2):45–46, 8–50, 2–3. https://doi.org/10.12968/jowc.2010.19.2.46966

    Article  CAS  PubMed  Google Scholar 

  5. Soleimani N, Mobarez A, Olia M, Atyabi F (2015) Synthesis, characterization and effect of the antibacterial activity of chitosan nanoparticles on vancomycin-resistant Enterococcus and other gram negative or gram positive bacteria. Int J Pure Appl Sci Technol 26(1):14–23

    CAS  Google Scholar 

  6. Schembri MA, Kjærgaard K, Klemm P (2003) Global gene expression in Escherichia coli biofilms. Mol Microbiol 48(1):253–267. https://doi.org/10.1046/j.1365-2958.2003.03432.x

    Article  CAS  PubMed  Google Scholar 

  7. Thoendel M, Kavanaugh JS, Flack CE, Horswill AR (2011) Peptide signaling in the Staphylococci. Chem Rev 111:117–151. https://doi.org/10.1021/cr100370n

    Article  CAS  PubMed  Google Scholar 

  8. Robertson SR, McLean RJ (2015) Beneficial biofilms. AIMS Bioeng 2(4):437–448. https://doi.org/10.3934/bioeng.2015.4.437

    Article  CAS  Google Scholar 

  9. Ramasamy M, Lee J (2016) Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. Biomed Res Int 2016:1851242. https://doi.org/10.1155/2016/1851242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8(9):881–890. https://doi.org/10.3201/eid0809.020063

    Article  PubMed  PubMed Central  Google Scholar 

  11. Evans LV (2000) Biofilms: recent advances in their study and control. Harwood Academic, Amsterdam

    Book  Google Scholar 

  12. Dunne WM (2002) Bacterial adhesion: Seen any good biofilms lately? Clin Microbiol Rev 15(2):155–166. https://doi.org/10.1128/CMR.15.2.155-166.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cohen BE (2014) Functional linkage between genes that regulate osmotic stress responses and multidrug resistance transporters: challenges and opportunities for antibiotic discovery. Antimicrob Agents Chemother 58(2):640–646. https://doi.org/10.1128/AAC.02095-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rasamiravaka T, Labtani Q, Duez P, El Jaziri M (2015) The formation of biofilms by Pseudomonas aeruginosa : a review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res Int 2015:1–17. https://doi.org/10.1155/2015/759348

    Article  CAS  Google Scholar 

  15. Asally M et al (2012) Localized cell death focuses mechanical forces during 3D patterning in a biofilm. PNAS 109(46):18891–18896. https://doi.org/10.1073/pnas.1212429109

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rathsam C, Eaton RE, Simpson CL, Browne GV, Valova VA, Harty DWS, Jacques NA (2005) Two-dimensional fluorescence difference gel electrophoretic analysis of Streptococcus mutans biofilms. J Proteome Res 4:2161–2173

    Article  CAS  PubMed  Google Scholar 

  17. Islam N, Kim Y, Ross JM, Marten MR (2014) Proteome analysis of Staphylococcus aureus biofilm cells grown under physiologically relevant fluid shear conditions. Proteome Sci 12:21. https://doi.org/10.1186/1477-5956-12-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qayyum S, Sharma D, Bisht D, Khan AU (2016) Protein translation machinery holds a key for transition of planktonic cells to biofilm state in Enterococcus faecalis: a proteomic approach. Biochem Biophys Res Commun 474:652–659. https://doi.org/10.1016/j.bbrc.2016.04.145

    Article  CAS  PubMed  Google Scholar 

  19. Tielen P, Rosin N, Meyer AK, Dohnt K, Haddad I, Jänsch L, Klein J, Narten M, Pommerenke C, Scheer M, Schobert M, Schomburg D, Thielen B, Jahn D (2013) Regulatory and metabolic networks for the adaptation of Pseudomonas aeruginosa biofilms to urinary tract-like conditions. PLoS ONE 8(8):e71845. https://doi.org/10.1371/journal.pone.0071845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Otto M (2013) Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu Rev Med 64:175–188. https://doi.org/10.1146/annurev-med-042711-140023

    Article  CAS  PubMed  Google Scholar 

  21. Annous BA, Fratamico PM, Smith JL (2009) Scientific status summary: quorum sensing in biofilms: Why bacteria behave the way they do? J Food Sci 74(1):R24–R37. https://doi.org/10.1111/j.1750-3841.2008.01022.x

    Article  CAS  PubMed  Google Scholar 

  22. Zhu J, Miller MB, Vance RE, Dziejman M, Bassler BL, Mekalanos JJ (2002) Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci USA 99:3129–3134. https://doi.org/10.1073/pnas.052694299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Singh BN, Prateeksha UDK, Singh BR, Defoirdt T, Gupta VK, Vahabi K (2016) Bactericidal, quorum quenching and anti-biofilm nanofactories: a new niche for nanotechnologists. Crit Rev Biotechnol 37(4):525–540. https://doi.org/10.1080/07388551.2016.1199010

    Article  CAS  PubMed  Google Scholar 

  24. Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. PNAS 104:11197–11202. https://doi.org/10.1073/pnas.0704624104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lewandowski Z, Evans LV (2000) Structure and function of biofilms: recent advances in their study and control. Harwood Academic Publishers, Amsterdam, pp 1–17

    Google Scholar 

  26. Bigger J (1944) Treatment of staphylococcal infections with penicillin-by intermittent sterilisation. Lancet 2:497–500

    Article  Google Scholar 

  27. Fux CA, Costerton JW, Stewart PS, Stoodley P (2005) Survival strategies of infectious biofilms. Trends Microbiol 13:34–40. https://doi.org/10.1016/j.tim.2004.11.010

    Article  CAS  PubMed  Google Scholar 

  28. Vinodkumar C, Kalsurmath S, Neelagund Y (2008) Utility of lytic bacteriophage in the treatment of multidrug-resistant Pseudomonas aeruginosa septicemia in mice. Indian J Pathol Microbiol 51:360. https://doi.org/10.4103/0377-4929.42511

    Article  CAS  PubMed  Google Scholar 

  29. Waldrop R, McLaren A, Calara F, McLemore R (2014) Biofilm growth has a threshold response to glucose in vitro. Clin Orthop Relat Res 472(11):3305–3310. https://doi.org/10.1007/s11999-014-3538-5

    Article  PubMed  PubMed Central  Google Scholar 

  30. Purevdorj B, Costerton JW, Stoodley P (2002) Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 68(9):4457–4464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun J, Ziqing D, Aixin Y (2014) Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun 453(2):254–267. https://doi.org/10.1016/j.bbrc.2014.05.090

    Article  CAS  PubMed  Google Scholar 

  32. Wang L, Slayden RA, Barry CE III, Liu J (2000) Cell wall structure of a mutant of Mycobacterium smegmatis defective in the biosynthesis of mycolic acids. J Biol Chem 275:7224–7229

    Article  CAS  PubMed  Google Scholar 

  33. Neut D, Van Der Mei C, Bulstra HK, Busscher H (2007) The role of small-colony variants in failure to diagnose and treat biofilm infections in orthopedics. Acta Orthop Scand 78:299–308. https://doi.org/10.1080/17453670710013843

    Article  Google Scholar 

  34. Høiby N, Frederiksen B, Pressler T (2005) Eradication of early Pseudomonas aeruginosa infection. J Cyst Fibros 4:49–54. https://doi.org/10.1016/j.jcf.2005.05.018

    Article  CAS  PubMed  Google Scholar 

  35. Daniel M, Chessman R, Al-Zahid S, Richards B, Rahman C, Ashraf W, McLaren J, Cox H, Qutachi O, Fortnum H, Fergie N, Shakesheff K, Birchall JP, Bayston RR (2012) Biofilm eradication with biodegradable modified-release antibiotic pellets: a potential treatment for glue ear. Arch Otolaryngol Head Neck Surg 138(10):942–949. https://doi.org/10.1001/archotol.2013.238

    Article  PubMed  Google Scholar 

  36. Gnanadhas DP, Elango M, Janardhanraj S et al (2015) Successful treatment of biofilm infections using shock waves combined with antibiotic therapy. Sci Rep 5:17440. https://doi.org/10.1038/srep17440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762–764. https://doi.org/10.1038/35037627

    Article  CAS  PubMed  Google Scholar 

  38. Kokare CR, Chakraborty S, Khopade AN, Mahadik KR (2009) Biofilm: importance and applications. Indian J Biotechnol 8(2):159–168

    CAS  Google Scholar 

  39. Long B, Koyfman A (2018) Infectious endocarditis: an update for emergency clinicians. Am J Emerg Med 36(9):1686–1692. https://doi.org/10.1016/j.ajem.2018.06.074

    Article  PubMed  Google Scholar 

  40. Kokare CR, Kadam SS, Mahadik KR, Chopade BA (2007) Studies on bioemulsier production from marine Streptomyces sp. S1. Indian J Biotechnol 6(1):78–84

    CAS  Google Scholar 

  41. Overman PR (2007) Biofilm : a new view of plaque. J Contemp Dent Pract 1(3):18–29

    Google Scholar 

  42. Kumar V, Robbins SL (eds) (2007) Robbins basic pathology, 8th edn. Elsevier, Philadelphia

    Google Scholar 

  43. Alhede M, Alhede M (2014) The biofilm challenge. EWMA J 14:1–5

    Google Scholar 

  44. Gjødsbøl K, Christensen JJ, Karlsmark T, Jørgensen B, Klein BM, Krogfelt KA (2006) Multiple bacterial species reside in chronic wounds: a longitudinal study. Int Wound J 3:225–231. https://doi.org/10.1111/j.1742-481X.2006.00159.x

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bowling FL, Jude EB, Boulton AJM (2009) MRSA and diabetic foot wounds: contaminating or infecting organisms? Curr Diab Rep 9:440. https://doi.org/10.1007/s11892-009-0072-z

    Article  PubMed  Google Scholar 

  46. Bjarnsholt T (2013) The role of bacterial biofilms in chronic infections. APMIS 121:1–58. https://doi.org/10.1111/apm.12099

    Article  CAS  Google Scholar 

  47. Foreman A, Wormald PJ (2010) Different biofilms, different disease? A clinical outcomes study. The Laryngoscope 120:1701–1706. https://doi.org/10.1002/lary.21024

    Article  PubMed  Google Scholar 

  48. Tambyah PA (2004) Catheter-associated urinary tract infections: diagnosis and prophylaxis. Int J Antimicrob Agents 24:44–48. https://doi.org/10.1016/j.ijantimicag.2004.02.008

    Article  CAS  Google Scholar 

  49. Niveditha SN (2012) The isolation and the biofilm formation of uropathogens in the patients with catheter associated urinary tract infections (UTIs). J Clin Diagn Res. https://doi.org/10.7860/jcdr/2012/4367.2537

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jesaitis AJ, Franklin MJ, Berglund D, Sasaki M, Lord CI, Bleazard JB, Duffy JE, Beyenal H, Lewandowski Z (2003) Compromised host defence on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. J Immunol 171:4329–4339. https://doi.org/10.4049/jimmunol.171.8.4329

    Article  CAS  PubMed  Google Scholar 

  51. Bjarnsholt T, Jensen PØ, Fiandaca MJ, Pedersen J, Hansen CR, Andersen CB, Pressler T, Givskov M, Høiby N (2009) Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol 44:547–558. https://doi.org/10.1002/ppul.21011

    Article  PubMed  Google Scholar 

  52. Kolpen M et al (2009) Polymorphonuclear leukocytes consume oxygen in sputum from chronic Pseudomonas aeruginosa pneumonia in cystic fibrosis. Thorax. https://doi.org/10.1136/thx.2009.114512

    Article  PubMed  Google Scholar 

  53. McKeon DJ, Cadwallader KA, Idris S, Cowburn AS, Pasteur MC, Barker H, Haworth CS, Bilton D, Chilvers ER, Condliffe AM (2010) Cystic fibrosis neutrophils have normal intrinsic reactive oxygen species generation. Eur Respir J 35:1264–1272. https://doi.org/10.1183/09031936.00089709

    Article  CAS  PubMed  Google Scholar 

  54. Volk APD, Barber BM, Goss KL, Ruff JG, Heise CK, Hook JS, Moreland JG (2011) Priming of neutrophils and differentiated PLB-985 cells by pathophysiological concentrations of TNF-α: is partially oxygen dependent. J Innate Immun 3:298–314. https://doi.org/10.1159/000321439

    Article  CAS  PubMed  Google Scholar 

  55. Alhede M, Bjarnsholt T, Jensen PO, Phipps RK, Moser C, Christophersen L, Christensen LD, van Gennip M, Parsek M, Hoiby N, Rasmussen TB, Givskov M (2009) Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes. Microbiology 155:3500–3508. https://doi.org/10.1099/mic.0.031443-0

    Article  CAS  PubMed  Google Scholar 

  56. Stewart PS, William Costerton J (2001) Antibiotic resistance of bacteria in biofilms. The Lancet 358:135–138. https://doi.org/10.1016/S0140-6736(01)05321-1

    Article  CAS  Google Scholar 

  57. de Beer D, Stoodley P, Roe F, Lewandowski Z (1994) Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol Bioeng 43:1131–1138. https://doi.org/10.1002/bit.260431118

    Article  PubMed  Google Scholar 

  58. Bjarnsholt T (2013) The role of bacterial biofilms in chronic infections. APMIS 121:1–58. https://doi.org/10.1111/apm.12099

    Article  CAS  Google Scholar 

  59. Nadell CD, Xavier JB, Foster KR (2009) Thesociobiology of biofilms. FEMS Microbiol Rev 33:206–224. https://doi.org/10.1111/j.1574-6976.2008.00150.x

    Article  CAS  PubMed  Google Scholar 

  60. Camargo LFA, Marra AR, Büchele GL, Sogayar AMC, Cal RGR, de Sousa JMA, Silva E, Knobel E, Edmond MB (2009) Double-lumen central venous catheters impregnated with chlorhexidine and silver sulfadiazine to prevent catheter colonisation in the intensive care unit setting: a prospective randomised study. J Hosp Infect 72:227–233. https://doi.org/10.1016/j.jhin.2009.03.018

    Article  CAS  PubMed  Google Scholar 

  61. Bayston R, Fisher LE, Weber K (2009) An antimicrobial modified silicone peritoneal catheter with activity against both Gram positive and Gram negative bacteria. Biomaterials 30:3167–3173. https://doi.org/10.1016/j.biomaterials.2009.02.028

    Article  CAS  PubMed  Google Scholar 

  62. Bordi C, de Bentzmann S (2011) Hacking into bacterial biofilms: a new therapeutic challenge. Ann Intensive Care 1:19. https://doi.org/10.1186/2110-5820-1-19

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hasan J, Crawford RJ, Ivanova EP (2013) Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnolt 31:295–304. https://doi.org/10.1016/j.tibtech.2013.01.017

    Article  CAS  Google Scholar 

  64. Roosjen A, van der Mei HC, Busscher HJ, Norde W (2004) Microbial adhesion to poly(ethylene oxide) brushes: influence of polymer chain length and temperature. Langmuir 20:10949–10955. https://doi.org/10.1021/la048469l

    Article  CAS  PubMed  Google Scholar 

  65. Sousa C, Henriques M, Oliveira R (2011) Mini-review: antimicrobial central venous catheters–recent advances and strategies. Biofouling 27(6):609–620. https://doi.org/10.1080/08927014.2011.593261

    Article  CAS  PubMed  Google Scholar 

  66. Sun L, Zhang C, Li P (2012) Characterization, antibiofilm, and mechanism of action of novel PEG-stabilized lipid nanoparticles loaded with terpinen-4-ol. J Agric Food Chem 60:6150–6156. https://doi.org/10.1021/jf3010405

    Article  CAS  PubMed  Google Scholar 

  67. Webster T, Taylor J (2011) Reducing infections through nanotechnology and nanoparticles. Int J Nanomed. https://doi.org/10.2147/ijn.s22021

    Article  Google Scholar 

  68. Suci PA, Berglund DL, Liepold L, Brumfield S, Pitts B, Davison W, Oltrogge L, Hoyt KO, Codd S, Stewart PS, Young M, Douglas T (2007) High-density targeting of a viral multifunctional nanoplatform to a pathogenic, biofilm-forming bacterium. Chem Biol 14:387–398. https://doi.org/10.1016/j.chembiol.2007.02.006

    Article  CAS  PubMed  Google Scholar 

  69. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346

    Article  CAS  PubMed  Google Scholar 

  70. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720. https://doi.org/10.1128/AEM.02218-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287. https://doi.org/10.1021/es1034188

    Article  CAS  PubMed  Google Scholar 

  72. Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11:371

    Article  CAS  PubMed  Google Scholar 

  73. Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R (2015) Alternative antimicrobial approach: nano-antimicrobial materials. Evid Based Complement Altern Med 2015:1–16. https://doi.org/10.1155/2015/246012

    Article  Google Scholar 

  74. Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279:71–76. https://doi.org/10.1111/j.1574-6968.2007.01012.x

    Article  CAS  PubMed  Google Scholar 

  75. Baker C, Pradhan A, Pakstis L, Pochan D, Shah SI (2005) Synthesis and antibacterial properties of silver nanoparticles. JNN 5:244–249. https://doi.org/10.1166/jnn.2005.034

    Article  CAS  Google Scholar 

  76. Ellis JR (2007) The many roles of silver in infection prevention. Am J Infect Control 35:E26. https://doi.org/10.1016/j.ajic.2007.04.017

    Article  Google Scholar 

  77. Ansari M, Khan H, Khan A, Cameotra S, Alzohairy M (2015) Anti-biofilm efficacy of silver nanoparticles against MRSA and MRSE isolated from wounds in a tertiary care hospital. Indian J Med Microbiol 33:101. https://doi.org/10.4103/0255-0857.148402

    Article  CAS  PubMed  Google Scholar 

  78. Ahmed B, Hashmi A, Khan MS, Musarrat J (2018) ROS mediated destruction of cell membrane, growth and biofilms of human bacterial pathogens by stable metallic AgNPs functionalized from bell pepper extract and quercetin. Microb Pathog 111:375–387. https://doi.org/10.1016/j.micpath.2017.09.019

    Article  CAS  Google Scholar 

  79. Ali K, Ahmed B, Dwivedi S, Saquib Q, Al-Khedhairy AA, Musarrat A (2015) Microwave accelerated green synthesis of stable silver nanoparticles with Eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates. J PLoS ONE 110(7):e0131178. https://doi.org/10.1371/journal.pone.0131178

    Article  CAS  Google Scholar 

  80. Lee J-H, Kim Y-G, Cho MH, Lee J (2014) ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Res Microbiol 169:888–896. https://doi.org/10.1016/j.micres.2014.05.005

    Article  CAS  Google Scholar 

  81. Dhillon GS, Kaur S, Brar SK (2014) Facile fabrication and characterization of chitosan-based zinc oxide nanoparticles and evaluation of their antimicrobial and antibiofilm activity. Int Nano Lett. https://doi.org/10.1007/s40089-014-0107-6

    Article  Google Scholar 

  82. Abdulkareem EH, Memarzadeh K, Allaker RP et al (2015) Anti-biofilm activity of zinc oxide and hydroxyapatite nanoparticles as dental implant coating materials. J Dent 43:1462–1469. https://doi.org/10.1016/j.jdent.2015.10.010

    Article  CAS  PubMed  Google Scholar 

  83. Applerot G, Lellouche J, Perkas N, Nitzan Y, Gedanken A, Banin E (2012) ZnO nanoparticle-coated surfaces inhibit bacterial biofilm formation and increase antibiotic susceptibility. RSC Adv 2:2314–2321

    Article  CAS  Google Scholar 

  84. Al-Shabib NA, Husain FM, Hassan I et al (2018) Biofabrication of zinc oxide nanoparticle from Ochradenusbaccatus leaves: broad-spectrum antibiofilm activity, protein binding studies, and in vivo toxicity and stress studies. J Nanomater 2018:1–14. https://doi.org/10.1155/2018/8612158

    Article  CAS  Google Scholar 

  85. Roudbar Mohammadi S, Mohammadi P, Hosseinkhani S, Shipour R (2013) Antifungal activity of TiO2 nanoparticles and EDTA on Candida albicans biofilms. Infect Epidemiol Med 1:33–38

    Article  Google Scholar 

  86. Ohko Y, Nagao Y, Okano K, Sugiura N, Fukuda A, Yang Y, Negishi N, Takeuchi M, Hanada S (2009) Prevention of Phormidium tenue biofilm formation by TiO2 photocatalysis. Microbes Environ 24:241–245. https://doi.org/10.1264/jsme2.ME09106

    Article  PubMed  Google Scholar 

  87. Khan ST, Ahmad J, Ahamed M et al (2016) Zinc oxide and titanium dioxide nanoparticles induce oxidative stress, inhibit growth, and attenuate biofilm formation activity of Streptococcus mitis. JBIC 21:295–303. https://doi.org/10.1007/s00775-016-1339-x

    Article  CAS  PubMed  Google Scholar 

  88. Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33:587–590. https://doi.org/10.1016/j.ijantimicag.2008.12.004

    Article  CAS  PubMed  Google Scholar 

  89. Eshed M, Lellouche J, Matalon S, Gedanken A, Banin E (2012) Sonochemical coatings of ZnO and CuO nanoparticles inhibit Streptococcus mutans biofilm formation on teeth model. Langmuir 28:12288–12295. https://doi.org/10.1021/la301432a

    Article  CAS  PubMed  Google Scholar 

  90. LewisOscar F, MubarakAli D, Nithya C et al (2015) One pot synthesis and anti-biofilm potential of copper nanoparticles (CuNPs) against clinical strains of Pseudomonas aeruginosa. Biofouling 31:379–391. https://doi.org/10.1080/08927014.2015.1048686

    Article  CAS  PubMed  Google Scholar 

  91. Agarwala M, Choudhury B, Yadav RNS (2014) Comparative study of antibiofilm activity of copper oxide and iron oxide nanoparticles against multidrug resistant biofilm forming uropathogens. Indian J Microbiol 54:365–368. https://doi.org/10.1007/s12088-014-0462-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Eshed M, Lellouche J, Gedanken A, Banin E (2014) A Zn-doped CuO nanocomposite shows enhanced antibiofilm and antibacterial activities against Streptococcus mutans compared to nanosized CuO. Adv Funct Mater 24:1382–1390. https://doi.org/10.1002/adfm.201302425

    Article  CAS  Google Scholar 

  93. Singh A, Ahmed A, Prasad KN, Khanduja S, Singh SK, Srivastava JK, Gajbhiye NS (2015) Antibiofilm and membrane-damaging potential of cuprous oxide nanoparticles against Staphylococcus aureus with reduced susceptibility to vancomycin. Antimicrob Agents Chemother 59:6882–6890. https://doi.org/10.1128/AAC.01440-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yu Q, Li J, Zhang Y, Wang Y, Liu L, Li M (2016) Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells. Sci Rep 6:26667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen W-Y, Lin J-Y, Chen W-J, Luo L, Wei-Guang Diau E, Chen Y-C (2010) Functional gold nanoclusters as antimicrobial agents for antibiotic-resistant bacteria. Nanomedicine 5:755–764. https://doi.org/10.2217/nnm.10.43

    Article  CAS  PubMed  Google Scholar 

  96. deAlteriis E, Maselli V, Falanga A et al (2018) Efficiency of gold nanoparticles coated with the antimicrobial peptide indolicidin against biofilm formation and development of Candida spp. clinical isolates. Infect Drug Resist 11:915–925. https://doi.org/10.2147/IDR.S164262

    Article  CAS  Google Scholar 

  97. Vinoj G, Pati R, Sonawane A, Vaseeharan B (2015) In vitro cytotoxic effects of gold nanoparticles coated with functional acyl homoserine lactone lactonase protein from Bacillus licheniformis and their antibiofilm activity against Proteus species. Antimicrob Agents Chemother 59:763–771. https://doi.org/10.1128/AAC.03047-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Manju S, Malaikozhundan B, Vijayakumar S, Shanthi S, Jaishabanu A, Ekambaram P, Vaseeharan B (2016) Antibacterial, antibiofilm and cytotoxic effects of Nigella sativa essential oil coated gold nanoparticles. Microb Pathog 91:129–135. https://doi.org/10.1016/j.micpath.2015.11.021

    Article  CAS  PubMed  Google Scholar 

  99. Gopinath K, Kumaraguru S, Bhakyaraj K, Mohan S, Venkatesh KS, Esakkirajan M, Kaleeswarran P, Alharbi NS, Kadaikunnan S, Govindarajan M, Benelli G, Arumugam A (2016) Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microb Pathog 101:1–11. https://doi.org/10.1016/j.micpath.2016.10.011

    Article  CAS  PubMed  Google Scholar 

  100. Haghighi F, Mohammadi SR, Mohammadi P, Hosseinkhani S, Shidpour R (2013) Antifungal Activity of TiO2 nanoparticles and EDTA on Candida albicans Biofilms. Infect Epidemiol Med 1:33–38

    Article  Google Scholar 

  101. Kang S, Mauter MS, Elimelech M (2009) Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environ Sci Technol 43:2648–2653. https://doi.org/10.1021/es8031506

    Article  CAS  PubMed  Google Scholar 

  102. Lichter JA, Rubner MF (2009) Polyelectrolyte multilayers with intrinsic antimicrobial functionality: the importance of mobile polycations. Langmuir 25:7686–7694. https://doi.org/10.1021/la900349c

    Article  CAS  PubMed  Google Scholar 

  103. Nevius BA, Chen YP, Ferry JL, Decho AW (2012) Surface-functionalization effects on uptake of fluorescent polystyrene nanoparticles by model biofilms. Ecotoxicology 21:2205–2213. https://doi.org/10.1007/s10646-012-0975-3

    Article  CAS  PubMed  Google Scholar 

  104. Lee ALZ, Ng VWL, Wang W, Hedrick JL, Yang YY (2013) Block copolymer mixtures as antimicrobial hydrogels for biofilm eradication. Biomaterials 34:10278–10286. https://doi.org/10.1016/j.biomaterials.2013.09.029

    Article  CAS  PubMed  Google Scholar 

  105. Tamilvanan S, Venkateshan N, Ludwig A (2008) The potential of lipid- and polymer-based drug delivery carriers for eradicating biofilm consortia on device-related nosocomial infections. J Control Release 128:2–22. https://doi.org/10.1016/j.jconrel.2008.01.006

    Article  CAS  PubMed  Google Scholar 

  106. DiTizio V, Ferguson GW, Mittelman MW, Khoury AE, Bruce AW, Di Cosmo F (1998) A liposomal hydrogel for the prevention of bacterial adhesion to catheters. Biomaterials 19:1877–1884. https://doi.org/10.1016/S0142-9612(98)00096-9

    Article  CAS  PubMed  Google Scholar 

  107. Al-Adham ISI, Al-Hmoud ND, Khalil E, Kierans M, Collier PJ (2003) Microemulsions are highly effective anti-biofilm agents. Lett Appl Microbiol 36:97–100. https://doi.org/10.1046/j.1472-765X.2003.01266.x

    Article  CAS  PubMed  Google Scholar 

  108. Al-Adham ISI, Ashour H, Al-Kaissi E, Khalil E, Kierans M, Collier PJ (2013) Studies on the kinetics of killing and the proposed mechanism of action of microemulsions against fungi. Int J Pharm 454:226–232. https://doi.org/10.1016/j.ijpharm.2013.06.049

    Article  CAS  PubMed  Google Scholar 

  109. Ramalingam K, Frohlich NC, Lee VA (2013) Effect of nanoemulsion on dental unit waterline biofilm. J Dent 8:333–336. https://doi.org/10.1016/j.jds.2013.02.035

    Article  Google Scholar 

  110. Janiszewska J, Swieton J, Lipkowski AW, Urbanczyk-Lipkowska Z (2003) Low molecular mass peptide dendrimers that express antimicrobial properties. Bioorg Med Chem Lett 13:3711–3713. https://doi.org/10.1016/j.bmcl.2003.08.009

    Article  CAS  PubMed  Google Scholar 

  111. Johansson EMV, Crusz SA, Kolomiets E, Buts L, Kadam RU, Cacciarini M, Bartels K-M, Diggle SP, Cámara M, Williams P, Loris R, Nativi C, Rosenau F, Jaeger K-E, Darbre T, Reymond J-L (2008) Inhibition and dispersion of Pseudomonas aeruginosa biofilms by glycopeptide dendrimers targeting the fucose-specific lectin LecB. Chem Biol 15:1249–1257. https://doi.org/10.1016/j.chembiol.2008.10.009

    Article  CAS  PubMed  Google Scholar 

  112. Lucky SS, Soo KC, Zhang Y (2015) Nanoparticles in photodynamic therapy. Chem Rev 115:1990–2042. https://doi.org/10.1021/cr5004198

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors Debjani Banerjee and P. M. Shivapriya are thankful to MHRD, Govt. of India and Pavan Kumar Gautam to DST for fellowship. They would like to acknowledge Indian Institute of Information Technology, Allahabad, for providing Institutional Seed Grant project for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sintu Kumar Samanta.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to publish this manuscript.

Additional information

Significance statement Biofilm infections have become a serious health issue worldwide. The increased resistance of biofilm to conventional antibiotics is major issue of concern. Hence, there is an urgent need to develop new strategies to combat the biofilm infections. In this pursuit, nanotechnology provides different approaches which confer better opportunities to resolve this problem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, D., Shivapriya, P.M., Gautam, P.K. et al. A Review on Basic Biology of Bacterial Biofilm Infections and Their Treatments by Nanotechnology-Based Approaches. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 90, 243–259 (2020). https://doi.org/10.1007/s40011-018-01065-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-018-01065-7

Keywords

Navigation