Skip to main content
Log in

Abstract

Castor bean (Ricinus communis L.) plantlets were exposed to lead to study the detoxification mechanism. The results showed that castor bean could survive in soils spiked with 800 mg/kg dry weight Pb for 30 days and grew normally without suffering phytotoxicity. Lead is accumulated mostly in the roots while a small quantity is translocated to the leaves. Changes were detected in both pattern and intensity of Ascorbate peroxidase isoenzyme, while, in case of Guiacol peroxidase, Superoxide dismutase and Glutathione reductase isoenzyme changes were detected only in the intensity. The band intensity of all the isoenzymes increased with the increase of extraneous lead. Increased amount of Malondialdehyde was indicative of lipid peroxidation and free radical generation under lead stress while increased level of proline pointed to the occurrence of mechanism of scavenging free radicals. A decline in chlorophyll content was observed under lead stress. In contrast, carotenoid content was increased in the treated plants. Semi-quantitative reverse transcriptase-PCR was performed to study the expression of an ATP binding casette transporter under lead stress. The expression of the ATP binding casette transporter was recorded only in roots and not in the leaves. The expression was maximum in 800 mg/kg dry weight lead treated plants. These results show that R. communis has a high tolerance and low avoidance to lead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agency for toxic substances & Disease registry, (ATSDR) (2011) CERCLA Priority list of hazardous substances. http://www.atsdr.cdc.gov/spl/. Accessed 31 July 2012

  2. Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants.CRC Press Inc., Boca Raton

  3. Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    Article  CAS  Google Scholar 

  4. Johnson FM (1998) The genetic effects of environmental lead. Mutat Res 410:123–140

    Article  PubMed  CAS  Google Scholar 

  5. Xie Z, Wang B, Sun Y, Li J (2006) Field demonstration of reduction of lead availability in soil and cabbage (Brassica chinensis L.) contaminated by mining tailings using phosphate fertilizers. J Zejiang Univ Sci 7:43–50

    Article  CAS  Google Scholar 

  6. Godbold DL, Kettner C (1991) Lead influences root growth and mineral nutrition of Picea abes seedlings. J Plant Physiol 139:95–99

    Article  CAS  Google Scholar 

  7. Moustakas M, Lanaras L, Symenidis S, Karataglis S (1994) Growth and some photosynthetic characteristics of field grown Avena sativa under copper and lead stress. Photosynthetica 30:389–396

    CAS  Google Scholar 

  8. Singh RP, Tripathi RD, Sinha SK, Maheshwari R, Srivastava HS (1997) Response of higher plants to lead contaminated environment. Chemosphere 34:2467–2493

    Article  PubMed  CAS  Google Scholar 

  9. Qiu RL, Zhao X, Tang YT, Yu FM, Hu PJ (2008) Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F. Chemosphere 74:6–12

    Article  PubMed  CAS  Google Scholar 

  10. Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109

    Article  PubMed  CAS  Google Scholar 

  11. Harris ED (1992) Regulation of antioxidant enzymes. FASEB J 6(9):2675–2683

    PubMed  CAS  Google Scholar 

  12. Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  13. Verma DPS (1999) Osmotic stress tolerance in plants: role of proline and sulfur metabolisms. In: Shinozaki K, Yamaguchi-Shinozaki K (eds) Molecular responses to cold, drought, heat and salt stress in higher plants. R.G Landers, Austin, pp 153–168

    Google Scholar 

  14. Prasad KVSK, Saradhi P, Sharmila P (1999) Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea. Environ Exp Bot 42:1–10

    Article  CAS  Google Scholar 

  15. Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis, CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–133

    Article  PubMed  CAS  Google Scholar 

  16. Gravot A, Lieutaud A, Verret F, Awroy P, Vavasseur A, Richard P (2004) AtHMa3, a plant P-1B-ATPase, functions as a Cd/Pb transporter in yeast. FEBS Lett 561:22–28

    Article  PubMed  CAS  Google Scholar 

  17. Sanchez-Fernandez RR, Davies TG, Colemen JO, Rea PA (2001) The Arabidopsis thaliana ABC protein superfamily: a complete inventory. J Biol Chem 276:30231–30244

    Article  PubMed  CAS  Google Scholar 

  18. Martinoia E, Klein M, Geisler M, Bovet L, Forestier C, Kolukisaoglu U, Muller-Rober B, Schulz B (2002) Multifunctionality of plant ABC transporters—more than just detoxifiers. Planta 214:345–355

    Article  PubMed  CAS  Google Scholar 

  19. Lee M, Lee K, Lee J, Noh EW, Lee Y (2005) AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiol 138:827–836

    Article  PubMed  CAS  Google Scholar 

  20. Kang J, Hwang J, Lee M, Kim Y, Assmann SM, Martinola E (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Nat Acad Sci USA 107:2355–2360

    Article  PubMed  CAS  Google Scholar 

  21. Bovet L, Eggman T, Meylan-Bettex M, Polier J, Kammer P, Marin E, Feller U, Martinoia E (2003) Transcript levels of AtMRPs after cadmium treatment: induction of AtMRP3. Plant Cell Environ 26:371–381

    Article  CAS  Google Scholar 

  22. Xia J, Yamaji N, Kasai T, Ma JF (2010) Plasma membrane-localized transporter for aluminium in rice. Proc Natl Acad Sci USA 107:18381–18385

    Article  PubMed  CAS  Google Scholar 

  23. Mani D, Kumar C, Srivastava RK (2007) Effect of cadmium, zinc and organic matter on the uptake of cadmium in Brassica rapa L. (Turnip). Proc Natl Acad Sci India Sect B Biol Sci 77(B) III: 263–276

    Google Scholar 

  24. Anonymous (1992) Standard methods for the examination of water and wastewater, 14th edn. APHA-AWWA-WPCF, Washington DC

  25. Nath V, Sahu V, Asthana AK, Yunus M (2009). Heavy metal indicator Marchantia paleacea Bertol (Liverwort): a case study of Nainital (Uttarakhand). Proc Natl Acad Sci Ind 79(B) II:147–152

    Google Scholar 

  26. Arnon DI (1949) Copper enzymes in isolated chloroplasts: polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed  CAS  Google Scholar 

  27. Davies BH (1976) Carotenoids. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments (vol 2). Academic Press, Inc., London, pp 38–165

    Google Scholar 

  28. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetic and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  29. Bates LS, Waldeen RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  30. Davis BJ (1964) Disc electrophoresis II: method an application to human serum proteins. Ann N Y Acad Sci 121:404–427

    Article  PubMed  CAS  Google Scholar 

  31. Reddy MM, Gasben EO (1971) Genetic studies of various enzymes. III. Comparative electrophoretic studies of esterase and peroxidase for species, hybrids and amphidiploids in the genus Nicotiana. Bot Gaz 132:158–166

    Article  Google Scholar 

  32. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  33. Wen-Chi H, Hong-Jen L, Ching-Chiung W, Der-Zen L (2004) Detection of glutathione reductase after electrophoresis on native or sodium dodecyl sulfate polyacrylamide gels. Electrophoresis 25:2926–2931

    Article  Google Scholar 

  34. Chatfield JM, Dalton DA (1993) Ascorbate peroxidase from soybean root nodules. Plant Physiol 103:661–662

    Article  PubMed  CAS  Google Scholar 

  35. Dong JZ, Dunston DI (1996) A reliable method for extraction of RNA from various conifer tissues. Plant Cell Rep 15:516–521

    Article  CAS  Google Scholar 

  36. Yoon J, Cao X, Zhou Q (2006) Accumulation of Pb, Cu, Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    Article  PubMed  CAS  Google Scholar 

  37. Gregor M (2004) Metal availability, uptake, transport and accumulation in plants. In: Prasad MNV (ed) Heavy metal stress in plants from biomolecules to ecosystems, 2nd edn. Springer, Berlin, pp 1–27

    Chapter  Google Scholar 

  38. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements: a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  39. Shen ZG, Liu YL (1998) Progress in the study on the plants that hyperaccumulate heavy metal. Plant Physiol Commun 34:133–139

    Google Scholar 

  40. Reddy AM, Kumar SG, Jyothsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 60:97–104

    Article  PubMed  CAS  Google Scholar 

  41. Wang RC, Wang XR, Tian Y, Yu HX, Gu XY, Du WC, Zhou H (2008) Oxidative stress, defence response and early biomarkers for lead contaminated soil in Vicia faba seedlings. Environ Toxicol Chem 27:970–977

    Article  PubMed  Google Scholar 

  42. Verma S, Dubey RS (2003) Pb toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    Article  CAS  Google Scholar 

  43. Cao XD, Ma LQ, Tu C (2004) Antioxidative response to arsenic in arsenic hyperaccumulator Chinese brake fern (Pteris vittata L.). Environ Pollut 188:317–325

    Article  Google Scholar 

  44. Chaoui A, Mazhoudi S, Ghorbal MH, Ferjana EE (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147

    Article  CAS  Google Scholar 

  45. Ding BZ, Shi GX, Xu Y, Hu ZZ, Xu QS (2007) Physiological responses of Alternanthera philoxiroides (Mart) Griseb leaves to cadmium stress. Environ Pollut 147:800–803

    Article  PubMed  CAS  Google Scholar 

  46. Xu QS, Hu JH, Xie KB, Yang HY, Du KH, Shi GX (2010) Accumulation and aquatic toxicity of silver in Potametogeton crispus L. J Hazard Mater 173:186–193

    Article  PubMed  CAS  Google Scholar 

  47. Slooten L, Capiau K, Van Camp W, Van Montagu M, Sybesma C, Inze D (1995) Factors affecting the enhancement of oxidative stress tolerance in transgenic tobacco overexpressing manganese superoxide dismutase in the chloroplasts. Plant Physiol 107:737–750

    PubMed  CAS  Google Scholar 

  48. Mittler R, Feng X, Cohen M (1998) Post transcriptional suppression of cytosolic ascorbate peroxidase expression during pathogen-induced programmed cell death in tobacco. Plant Cell 10:461–473

    PubMed  CAS  Google Scholar 

  49. Asada K, Takahashi M (1987) Production of scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition: topics in photosynthesis, vol 9. Elsevier, Amsterdam, pp 227–287

    Google Scholar 

  50. Foyer CH, Souriau N, Perret S, Lelandais M, Kunert KJ (1995) Over expression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109:1047–1057

    Article  PubMed  CAS  Google Scholar 

  51. Sanchez-FernandezR Fricker M, Corben LB, White NS, Sheard N, Leaver CJ, Van Montagu M, Inze D, May MJ (1997) Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control. Proc Nat Acad Sci USA 94:2745–2750

    Article  Google Scholar 

  52. Chen J, Goldsbrough PB (1994) Increased activity of glutamyl cysteine synthetase in tomato cells selected for cadmium tolerance. Plant Physiol 106:233–239

    PubMed  CAS  Google Scholar 

  53. Mehra RK, Kodati VR, Abdullah R (1995) Chain length dependent Pb coordination in phytochelatins. Biochem Biophys Res Commun 215:730–736

    Article  PubMed  CAS  Google Scholar 

  54. Mani D, Sharma B, Kumar C, Pathak N (2012) Depth-wise distribution, mobility and naturally occurring glutathione based phytoaccumulation of Cd and Zn in sewage-irrigated soil profiles. Int J Environ Sci Technol. doi:10.1007/s13762-012-0121-z

  55. Asada K (1992) Ascorbate peroxidase: a hydrogen peroxide scavenging enzyme in plants. Plant Physiol 85:235–241

    Article  CAS  Google Scholar 

  56. Kaprinski S, Escobar C, Karprinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9:627–640

    Google Scholar 

  57. Rucinska R, Waplak S, Gwozoz EA (1999) Free radical formation and activity of antioxidant enzymes in lupin roots exposed to lead. Plant Physiol Biochem 37:187–194

    Article  CAS  Google Scholar 

  58. Pal S, Kundu R (2011). A field study of chromium and cadmium uptake, accumulation and tolerance in alligator weed, Alternanthera philoxeroides (Mart.) Griseb. Proc Natl Acad Sci Ind 81(B) IV:404–410

  59. Rice-Evans CC, Miller NJ, Sampson J (1997) Antioxidative activities of carotene and xanthophylls. FEBS Lett 384:240–242

    Google Scholar 

  60. Singh S, Eapen S, D’Souza SF (2006) Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere 62:233–246

    Article  PubMed  CAS  Google Scholar 

  61. Chatterjee A, Pal R, Pal S, Kundu R (2008) Morphological and physiological responses of mung bean (Vigna radiata var. radiata (L.) Wilczek) seedlings under lead stress. J Bot Soc Beng 62(1):55–60

    Google Scholar 

  62. Siripornadulsil S, Traina S, Verma DPS, Sayre T (2002) Molecular mechanism of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14:2837–2847

    Article  PubMed  CAS  Google Scholar 

  63. Verrier PJ, Bird B, Dassa E, Forestier C, Geisler M, Klein M, Kolukisaoglu U, Lee Y, Martinoia E, Murphy A, Rea PA, Samuels L, Schulz B, Spalding EJ, Yazaki K, Theodoulou FL (2008) Plant ABC proteins—a unified nomenclature and updated inventory. Trends Plant Sci 13:151–159

    Article  PubMed  CAS  Google Scholar 

  64. Rea PA (2007) Plant ATP-binding cassette transporters. Annu Rev Plant Biol 58:347–375

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by University Grants Commission (UGC), Government of India. R.P. is thankful to UGC, New Delhi for her research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Kundu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, R., Banerjee, A. & Kundu, R. Responses of Castor Bean (Ricinus communis L.) to Lead Stress. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 83, 643–650 (2013). https://doi.org/10.1007/s40011-013-0180-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-013-0180-z

Keywords

Navigation