Skip to main content

Advertisement

Log in

The stabilization of biopharmaceuticals: current understanding and future perspectives

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Proteins have many therapeutic advantages over small synthetic drugs in terms of their high specificity and activity. Accordingly, the global biopharmaceutical market grows rapidly and has driven the continuous increase of R&D investment in protein-based drug products, thus the number of approved protein drugs also continuously increases. However, during their manufacture, transport, and storage, proteins are often exposed to various detrimental environments that can cause protein destabilization, resulting in undesirable drug properties such as partial or complete loss of biological activity, altered solubility, and immunogenicity. Therefore, the thorough evaluation/monitoring and optimization of process variables and product formulations are critical to ensure product quality during its appropriate shelf-life. However, because of (i) the complexity of protein structures, (ii) multiple degradation pathways, and (iii) various intrinsic and extrinsic factors that can affect the stability, protein stabilization is not straightforward and remains a big challenge in the clinical development and commercialization of protein-based drug products, although significant progress has been made. Considering that a better understanding of the various instability mechanisms and factors is important for the quality control of protein drug products and their successful clinical usage, this review briefly overviews protein destabilization pathways and deals with general issues such as controlling the factors of protein stabilization, especially during manufacturing, shipping and storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdul-Fattah AM, Kalonia DS, Pikal MJ (2007) The challenge of drying method selection for protein pharmaceuticals: product quality implications. J Pharm Sci 96:1886–1916

    Article  CAS  PubMed  Google Scholar 

  • Agarkhed M, O’Dell C, Hsieh M-C, Zhang J, Goldstein J, Srivastava A (2013) Effect of polysorbate 80 concentration on thermal and photostability of a monoclonal antibody. AAPS PharmSciTech 14:1–9

    Article  CAS  PubMed  Google Scholar 

  • Alford JR, Fowler AC, Wuttke DS, Kerwin BA, Latypov RF, Carpenter JF, Randolph TW (2011) Effect of benzyl alcohol on recombinant human interleukin-1 receptor antagonist structure and hydrogen-deuterium exchange. J Pharm Sci 100:4215–4224

    Article  CAS  PubMed  Google Scholar 

  • Allison SD, Dong A, Carpenter JF (1996) Counteracting effects of thiocyanate and sucrose on chymotrypsinogen secondary structure and aggregation during freezing, drying, and rehydration. Biophys J 71:2022–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allison SD, Randolph TW, Manning MC, Middleston K, Davis A, Carpenter JF (1998) Effects of drying methods and additives on structure and function of actin: mechanisms of dehydration-induced damage and its inhibition. Arch Biochem Biophys 358:171–181

    Article  CAS  PubMed  Google Scholar 

  • Allison SD, Manning MC, Randolph TW, Middleton K, Davis A, Carpenter JF (2000) Optimization of storage stability of lyophilized actin using combinations of disaccharides and dextran. J Pharm Sci 89:199–214

    Article  CAS  PubMed  Google Scholar 

  • Anchordoquy TJ, Carpenter JF (1996) Polymers protect lactate dehydrogenase during freeze-drying by inhibiting dissociation in the frozen state. Arch Biochem Biophys 332:231–238

    Article  CAS  PubMed  Google Scholar 

  • Angkawinitwong U, Sharma G, Khaw PT, Brocchini S, Williams GR (2015) Solid-state protein formulations. Ther Deliv 6:59–82

    Article  CAS  PubMed  Google Scholar 

  • Arakawa T, Prestrelski SJ, Kenney WC, Carpenter JF (2001) Factors affecting short-term and long-term stabilities of proteins. Adv Drug Deliv Rev 46:307–326

    Article  CAS  PubMed  Google Scholar 

  • Arakawa T, Kita Y, Timasheff SN (2007) Protein precipitation and denaturation by dimethyl sulfoxide. Biophys Chem 131:62–70

    Article  CAS  PubMed  Google Scholar 

  • Assemand E, Lacroix M, Mateescu MA (2003) l-Tyrosine prevents aggregation of therapeutic proteins by γ-irradiation. Biotechnol Appl Biochem 38:151–156

    Article  CAS  PubMed  Google Scholar 

  • Bagriantsev SN, Kushnirov VV, Liebman SW (2006) Analysis of amyloid aggregates using agarose gel electrophoresis. Methods Enzymol 412:33–48

    Article  CAS  PubMed  Google Scholar 

  • Baldwin R (1988) Contamination of insulin by silicone oil: a potential hazard of plastic insulin syringes. Diabet Med 5:789–790

    Article  CAS  PubMed  Google Scholar 

  • Bam NB, Randolph TW, Cleland JL (1995) Stability of protein formulations: investigation of surfactant effects by a novel EPR spectroscopic technique. Pharm Res 12:2–11

    Article  CAS  PubMed  Google Scholar 

  • Bam NB, Cleland JL, Yang J, Manning MC, Carpenter JF, Kelley RF, Randolph TW (1998) Tween protects recombinant human growth hormone against agitation-induced damage via hydrophobic interactions. J Pharm Sci 87:1554–1559

    Article  CAS  PubMed  Google Scholar 

  • Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta Bioenerg 1767:1073–1101

    Article  CAS  Google Scholar 

  • Basu P, Krishnan S, Thirumangalathu R, Randolph TW, Carpenter JF (2013) IgG1 aggregation and particle formation induced by silicone-water interfaces on siliconized borosilicate glass beads: a model for siliconized primary containers. J Pharm Sci 102:852–865

    Article  CAS  PubMed  Google Scholar 

  • Bee JS, Chiu D, Sawicki S, Stevenson JL, Chatterjee K, Freund E, Carpenter JF, Randolph TW (2009a) Monoclonal antibody interactions with micro-and nanoparticles: adsorption, aggregation, and accelerated stress studies. J Pharm Sci 98:3218–3238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bee JS, Nelson SA, Freund E, Carpenter JF, Randolph TW (2009b) Precipitation of a monoclonal antibody by soluble tungsten. J Pharm Sci 98:3290–3301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bee JS, Randolph TW, Carpenter JF, Bishop SM, Dimitrova MN (2011) Effects of surfaces and leachables on the stability of biopharmaceuticals. J Pharm Sci 100:4158–4170

    Article  CAS  PubMed  Google Scholar 

  • Benevides JM, Overman SA, Thomas GJ (2004) Raman spectroscopy of proteins. Curr Protoc Protein Sci. doi:10.1002/0471140864.ps1708s33

    PubMed  Google Scholar 

  • Bernstein RK (1987) Clouding and deactivation of clear (regular) human insulin: association with silicone oil from disposable syringes? Diabetes Care 10:786–787

    Article  CAS  PubMed  Google Scholar 

  • Bhambhani A, Kissmann JM, Joshi SB, Volkin DB, Kashi RS, Middaugh CR (2012) Formulation design and high-throughput excipient selection based on structural integrity and conformational stability of dilute and highly concentrated IgG1 monoclonal antibody solutions. J Pharm Sci 101:1120–1135

    Article  CAS  PubMed  Google Scholar 

  • Biggar KK, Dawson NJ, Storey KB (2012) Real-time protein unfolding: a method for determining the kinetics of native protein denaturation using a quantitative real-time thermocycler. Biotechniques 53:231–238

    Article  CAS  PubMed  Google Scholar 

  • Bis RL, Singh SM, Cabello-Villegas J, Mallela KM (2015) Role of benzyl alcohol in the unfolding and aggregation of interferon α-2a. J Pharm Sci 104:407–415

    Article  CAS  PubMed  Google Scholar 

  • Brange J, Lnagkjaer L, Havelund S, Volund A (1992) Chemical stability of insulin. 1. Hydrolytic degradation during storage of pharmaceutical preparations. Pharm Res 9:715–726

    Article  CAS  PubMed  Google Scholar 

  • Brange J, Andersen L, Laursen ED, Meyn G, Rasmussen E (1997) Toward understanding insulin fibrillation. J Pharm Sci 86:517–525

    Article  CAS  PubMed  Google Scholar 

  • Buchta C, Dettke M, Funovics PT, Hirschl AM, Macher M, Worel N, Höcker P (2004) Impact of manufacturing, irradiation and filtration steps to bacterial contamination of autologous fibrin sealant. Biologicals 32:165–169

    Article  CAS  PubMed  Google Scholar 

  • Butler LG (1979a) Enzymes in non-aqueous solvents. Enzyme Microb Technol 1:253–259

    Article  CAS  Google Scholar 

  • Butler WL (1979b) [45] Fourth derivative spectra. Methods Enzymol 56:501–515

    Article  CAS  PubMed  Google Scholar 

  • Cao E, Chen Y, Cui Z, Foster PR (2003) Effect of freezing and thawing rates on denaturation of proteins in aqueous solutions. Biotechnol Bioeng 82:684–690

    Article  CAS  PubMed  Google Scholar 

  • Capasso S, Mazzarella L, Sica F, Zagari A (1991) First evidence of spontaneous deamidation of glutamine residue via cyclic imide to α-and γ-glutamic residue under physiological conditions. J Chem Soc Chem Commun 23:1667–1668

    Article  Google Scholar 

  • Cardona S, Schebor C, Buera MP, Karel M, Chirife J (1997) Thermal stability of invertase in reduced-moisture amorphous matrices in relation to glassy state and trehalose crystallization. J Food Sci 62:105–112

    Article  CAS  Google Scholar 

  • Carpenter JF, Pikal MJ, Chang BS, Randolph TW (1997) Rational design of stable lyophilized protein formulations: some practical advice. Pharm Res 14:969–975

    Article  CAS  PubMed  Google Scholar 

  • Carpenter JF, Kendrick BS, Chang BS, Manning MC, Randolph TW (1999) [16] Inhibition of stress-induced aggregation of protein therapeutics. Methods Enzymol 309:236–255

    Article  CAS  PubMed  Google Scholar 

  • Chang L, Pikal MJ (2009) Mechanisms of protein stabilization in the solid state. J Pharm Sci 98:2886–2908

    Article  CAS  PubMed  Google Scholar 

  • Chang BS, Yeung B (2010) Physical stability of protein pharmaceuticals. In: Jameel F, Hershenson S (eds) Formulation and process development strategies for manufacturing biopharmaceuticals. Wiley, New York, pp 69–104

  • Chang N, Hen SJ, Klibanov AM (1991) Protein separation and purification in neat dimethyl sulfoxide. Biochem Biophys Res Commun 176:1462–1468

    Article  CAS  PubMed  Google Scholar 

  • Chang BS, Beauvais RM, Arakawa T, Narthi LO, Dong A, Aparisio DI, Carpenter JF (1996) Formation of an active dimer during storage of interleukin-1 receptor antagonist in aqueous solution. Biophys J 71:3399–3406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chantelau E (1989) Silicone oil contamination of insulin. Diabet Med 6:278–278

    Article  CAS  PubMed  Google Scholar 

  • Chantelau E, Berger M (1985) Pollution of insulin with silicone oil, a hazard of disposable plastic syringes. Lancet 325:1459

    Article  Google Scholar 

  • Chantelau E, Berger M, Böhlken B (1986) Silicone oil released from disposable insulin syringes. Diabetes Care 9:672–673

    Article  CAS  PubMed  Google Scholar 

  • Charman SA, Mason Kl, Charman WN (1993) Techniques for assessing the effects of pharmaceutical excipients on the aggregation of porcine growth hormone. Pharm Res 10:954–962

    Article  CAS  PubMed  Google Scholar 

  • Chen BL, Arakawa T, Hsu E, Narhi LO, Tressel TJ, Chien SL (1994) Strategies to suppress aggregation of recombinant keratinocyte growth factor during liquid formulation development. J Pharm Sci 83:1657–1661

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Costantino HR, Liu J, Hsu CC, Shire SJ (1999) Influence of calcium ions on the structure and stability of recombinant human deoxyribonuclease I in the aqueous and lyophilized states. J Pharm Sci 88:477–482

    Article  CAS  PubMed  Google Scholar 

  • Chi EY, Krishnan S, Randolph TW, Carpenter JF (2003) Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm Res 20:1325–1336

    Article  CAS  PubMed  Google Scholar 

  • Cho HJ, Oh D, Kim DD (2012) Polysaccharides-based spray-dried microspheres for maintained stability and controlled release of protein. J Pharm Investig 42:83–88

    Article  CAS  Google Scholar 

  • Chou DK, Krishnamurthy R, Randolph TW, Carpenter JF, Manning MC (2005) Effects of Tween 20® and Tween 80® on the stability of Albutropin during agitation. J Pharm Sci 94:1368–1381

    Article  CAS  PubMed  Google Scholar 

  • Cleland JL, Powell MF, Shire SJ (1992) The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit Rev Ther Drug Carrier Syst 10:307–377

    Google Scholar 

  • Costantino HR, Langer R, Klibanov AM (1994) Moisture-induced aggregation of lyophilized insulin. Pharm Res 11:21–29

    Article  CAS  PubMed  Google Scholar 

  • Cowan D (1997) Thermophilic proteins: stability and function in aqueous and organic solvents. Comp Biochem Physiol A 118:429–438

    Article  CAS  Google Scholar 

  • Craik DJ, Daly NL, Bond T, Waine C (1999) Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J Mol Biol 294:1327–1336

    Article  CAS  PubMed  Google Scholar 

  • Crowe LM, Reid DS, Crowe JH (1996) Is trehalose special for preserving dry biomaterials? Biophys J 71:2087–2093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel RM, Dines M, Petach H (1996) The denaturation and degradation of stable enzymes at high temperatures. Biochem J 317:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darrington RT, Anderson BD (1995) Evidence for a common intermediate in insulin deamidation and covalent dimer formation: effects of pH and aniline trapping in dilute acidic solutions. J Pharm Sci 84:275–282

    Article  CAS  PubMed  Google Scholar 

  • Davies MJ (2003) Singlet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun 305:761–770

    Article  CAS  PubMed  Google Scholar 

  • Davies MJ (2005) The oxidative environment and protein damage. Biochim Biophys Acta 1703:93–109

    Article  CAS  PubMed  Google Scholar 

  • de Gomez-Puyou MT, Gomez-Puyou A (1998) Enzymes in low water systems. Crit Rev Biochem Mol Biol 33:53–89

    Article  PubMed  Google Scholar 

  • Den Engelsman J, Garidel P, Smulders R, Koll H, Smith B, Bassarab S, Seidl A, Hainzl O, Jiskoot W (2011) Strategies for the assessment of protein aggregates in pharmaceutical biotech product development. Pharm Res 28:920–933

    Article  CAS  PubMed  Google Scholar 

  • Dill KA (1990) Dominant forces in protein folding. BioChemistry 29:7133–7155

    Article  CAS  PubMed  Google Scholar 

  • Dixit N, Maloney KM, Kalonia DS (2013) Protein-silicone oil interactions: comparative effect of nonionic surfactants on the interfacial behavior of a fusion protein. Pharm Res 30:1848–1859

    Article  CAS  PubMed  Google Scholar 

  • Doran PM (2006) Loss of secreted antibody from transgenic plant tissue cultures due to surface adsorption. J Biotechnol 122:39–54

    Article  CAS  PubMed  Google Scholar 

  • Duddu SP, Dal Monte PR (1997) Effect of glass transition temperature on the stability of lyophilized formulations containing a chimeric therapeutic monoclonal antibody. Pharm Res 14:591–595

    Article  CAS  PubMed  Google Scholar 

  • Eckhardt BM, Oeswein JQ, Bewley TA (1991) Effect of freezing on aggregation of human growth hormone. Pharm Res 8:1360–1364

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg WV (1974) Inorganic particle content of foods and drugs. Environ Health Perspect 9:183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ennis RD, Pritchard R, Nakamura C, Coulon M, Yang T, Visor GC, Lee WA (2001) Glass vials for small volume parenterals: influence of drug and manufacturing processes on glass delamination. Pharm Dev Technol 6:393–405

    Article  CAS  PubMed  Google Scholar 

  • Fabian H, Mantsch HH (1995) Ribonuclease A revisited: infrared spectroscopic evidence for lack of native-like secondary structures in the thermally denatured state. BioChemistry 34:13651–13655

    Article  CAS  PubMed  Google Scholar 

  • Fatouros A, Osterberg T, Mikaelsson M (1997) Recombinant factor VIII SQ—influence of oxygen, metal ions, pH and ionic strength on its stability in aqueous solution. Int J Pharm 155:121–131

    Article  CAS  Google Scholar 

  • Fekete S, Guillarme D, Sandra P, Sandra K (2015) Chromatographic, electrophoretic, and mass spectrometric methods for the analytical characterization of protein biopharmaceuticals. Anal Chim 88:480–507

    Article  CAS  Google Scholar 

  • Fesinmeyer RM, Hogan S, Saluja A, Brych SR, Kras E, Narhi LO, Brems DN, Gokarn YR (2008) Effect of ions on agitation-and temperature-induced aggregation reactions of antibodies. Pharm Res 26:903–913

    Article  PubMed  CAS  Google Scholar 

  • Fields GB, Alonso DOV, Stigter D, Dill KA (1992) Theory for the aggregation of proteins and copolymers. J Phys Chem B 96:3974–3981

    Article  CAS  Google Scholar 

  • Fink AL (1998) Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des 3:R9–R23

    Article  CAS  PubMed  Google Scholar 

  • Fischer S, Hoernschemeyer J, Mahler HC (2008) Glycation during storage and administration of monoclonal antibody formulations. Eur J Pharm Sci 70:42–50

    CAS  Google Scholar 

  • Fonte P, Soares S, Sousa F, Costa A, Seabra V, Reis S, Sarmento B (2014) Stability study perspective of the effect of freeze-drying using cryoprotectants on the structure of insulin loaded into PLGA nanoparticles. Biomacromolecules 15:3753–3765

    Article  CAS  PubMed  Google Scholar 

  • Ford AW, Dawson PJ (1994) Effect of type of container, storage temperature and humidity on the biological activity of freeze-dried alkaline phosphatase. Biologicals 22:191–197

    Article  CAS  PubMed  Google Scholar 

  • Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20:122–128

    Article  CAS  PubMed  Google Scholar 

  • Fransson J, Hagman A (1996) Oxidation of human insulin-like growth factor I in formulation studies, II. Effects of oxygen, visible light, and phosphate on methionine oxidation in aqueous solution and evaluation of possible mechanisms. Pharm Res 13:1476–1481

    Article  CAS  PubMed  Google Scholar 

  • Gadgil HS, Bondarenko PV, Pipes G, Rehder D, McAuley A, Perico N, Dillon T, Ricci M, Treuheit M (2007) The LC/MS analysis of glycation of IgG molecules in sucrose containing formulations. J Pharm Sci 96:2607–2621

    Article  CAS  PubMed  Google Scholar 

  • Gervais D (2016) Protein deamidation in biopharmaceutical manufacture: understanding, control and impact. J Chem Technol Biotechnol 91:569–575

    Article  CAS  Google Scholar 

  • Gil H, Salcedo D, Romero R (2005) Effect of phosphate buffer on the kinetics of glycation of proteins. J Phys Org Chem 18:183–186

    Article  CAS  Google Scholar 

  • Goedken ER, Marqusee S (1998) Folding the ribonuclease H domain of Moloney murine leukemia virus reverse transcriptase requires metal binding or a short N-terminal extension. Proteins Struct Funct Bioinform 33:135–143

    Article  CAS  Google Scholar 

  • Goolcharran C, Jones AJS, Borchardt RT (2000) Comparison of the rates of deamidation, diketopiperazine formation, and oxidation in recombinant human vascular endothelial growth factor and model peptides. AAPS PharmScitech 2:1–6

    Google Scholar 

  • Goto Y, Fink AL (1989) Conformational states of β-lactamase: molten-globule states at acidic and alkaline pH with high salt. BioChemistry 28:945–952

    Article  CAS  PubMed  Google Scholar 

  • Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1:2876–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths SW, Cooney CL (2002) Relationship between protein structure and methionine oxidation in recombinant human α1-antitrypsin. BioChemistry 41:6245–6252

    Article  CAS  PubMed  Google Scholar 

  • Gülseren İ, Güzey D, Bruce BD, Weiss J (2007) Structural and functional changes in ultrasonicated bovine serum albumin solutions. Ultrason Sonochem 14:173–183

    Article  PubMed  CAS  Google Scholar 

  • Gupta P, Porembski E, Williams N (1994) Approaches to reducing subvisible particle counts in lyophilized parenteral formulations. PDA J Pharm Sci Technol 48:30–37

    CAS  Google Scholar 

  • Gupta BS, Taha M, Lee M-J (2015) Buffers more than buffering agent: introducing a new class of stabilizers for the protein BSA. Phys Chem Chem Phys 17:1114–1133

    Article  CAS  PubMed  Google Scholar 

  • Hage DS, Anguizola JA, Bi C, Li R, Matsuda R, Papastavros E, Pfaunmiller E, Vargas J, Zheng X (2012) Pharmaceutical and biomedical applications of affinity chromatography: recent trends and developments. J Pharm Biomed Anal 69:93–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hageman MJ (1988) The role of moisture in protein stability. Drug Dev Ind Pharm 14:2047–2070

    Article  CAS  Google Scholar 

  • Harding MM, Ward LG, Haymet ADJ (1999) Type 1 antifreeze proteins: structure-activity studies and mechanisms of ice growth inhibition. Eur J Biochem 264:653–665

    Article  CAS  PubMed  Google Scholar 

  • Hawe A, Poole R, Romeijn S, Kasper P, Van Der Heijden R, Jiskoot W (2009) Towards heat-stable oxytocin formulations: analysis of degradation kinetics and identification of degradation products. Pharm Res 26:1679–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkins CL, Davies MJ (2001) Generation and propagation of radical reactions on proteins. Biochim Biophys Acta 1504:196–219

    Article  CAS  PubMed  Google Scholar 

  • Hawkins CL, Morgan PE, Davies MJ (2009) Quantification of protein modification by oxidants. Free Radical Biol Med 46:965–988

    Article  CAS  Google Scholar 

  • Heller MC, Carpenter JF, Randolph TW (1997) Manipulation of lyophilization-induced phase separation: implications for pharmaceutical proteins. Biotechnol Prog 13:590–596

    Article  CAS  PubMed  Google Scholar 

  • Hermeling S, Crommelin DJA, Schellekens H, Jiskoot W (2004) Structure-immunogenicity relationships of therapeutic proteins. Pharm Res 21:897–903

    Article  CAS  PubMed  Google Scholar 

  • Hilgren A, Lindgren J, Aldén M (2002) Protection mechanism of Tween 80 during freeze–thawing of a model protein, LDH. Int J Pharm 237:57–69

    Article  Google Scholar 

  • Hilser VJ, Dowdy D, Oas TG, Freire E (1998) The structural distribution of cooperative interactions in proteins: analysis of the native state ensemble. Proc Natl Acad Sci USA 95:9903–9908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirakawa M, Makino K, Nakashima K, Kataoka Y, Oishi R (1999) Evaluation of the in-line filters for the intravenous infusion of amphotericin B fluid. J Clin Pharm Ther 24:387–392

    Article  CAS  PubMed  Google Scholar 

  • Hoehne M, Samuel F, Dong A, Wurth C, Mahler HC, Carpenter JF, Randolph TW (2011) Adsorption of monoclonal antibodies to glass microparticles. J Pharm Sci 100:123–132

    Article  CAS  PubMed  Google Scholar 

  • Höger K, Mathes J, Frieß W (2015) IgG1 adsorption to siliconized glass vials—influence of pH, ionic strength, and nonionic surfactants. J Pharm Sci 104:34–43

    Article  PubMed  CAS  Google Scholar 

  • Hong P, Koza S, Bouvier ES (2012) A review size-exclusion chromatography for the analysis of protein biotherapeutics and their aggregates. J Liq Chromatogr Relat Technol 35:2923–2950

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horvat Š, Jakas A (2004) Peptide and amino acid glycation: new insights into the Maillard reaction. J Pept Sci 10:119–137

    Article  CAS  PubMed  Google Scholar 

  • Hovorka SW, Schöneich C (2001) Oxidative degradation of pharmaceuticals: theory, mechanisms and inhibition. J Pharm Sci 90:253–269

    Article  CAS  PubMed  Google Scholar 

  • Huang M, Horwitz TS, Zweiben C, Singh SK (2011) Impact of extractables/leachables from filters on stability of protein formulations. J Pharm Sci 100:4617–4630

    Article  CAS  PubMed  Google Scholar 

  • Hung HC, Chang GG (1998) Biphasic denaturation of human placental alkaline phosphatase in guanidinium chloride. Proteins Struct Funct Bioinform 33:49–61

    Article  CAS  Google Scholar 

  • Iacocca RG, Toltl N, Allgeier M, Bustard B, Dong X, Foubert M, Hofer J, Peoples S, Shelbourn T (2010) Factors affecting the chemical durability of glass used in the pharmaceutical industry. AAPS PharmSciTech 11:1340–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaenicke R, Závodszky P (1990) Proteins under extreme physical conditions. FEBS Lett 268:344–349

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Nashed-Samuel Y, Li C, Liu W, Pollastrini J, Mallard D, Wen ZQ, Fujimori K, Pallitto M, Donahue L (2009) Tungsten-induced protein aggregation: solution behavior. J Pharm Sci 98:4695–4710

    Article  CAS  PubMed  Google Scholar 

  • Jones LS, Kaufmann A, Middaugh CR (2005) Silicone oil induced aggregation of proteins. J Pharm Sci 94:918–927

    Article  CAS  PubMed  Google Scholar 

  • Joshi AB, Sawai M, Kearney WR, Kirsch LE (2005) Studies on the mechanism of aspartic acid cleavage and glutamine deamidation in the acidic degradation of glucagon. J Pharm Sci 94:1912–1927

    Article  CAS  PubMed  Google Scholar 

  • Katakam M, Banga AK (1997) Use of poloxamer polymers to stabilize recombinant human growth hormone against various processing stresses. Pharm Dev Technol 2:143–149

    Article  CAS  PubMed  Google Scholar 

  • Katakam M, Bell LN, Banga AK (1995) Effect of surfactants on the physical stability of recombinant human growth hormone. J Pharm Sci 84:713–716

    Article  CAS  PubMed  Google Scholar 

  • Kendrick B, Chang B, Carpenter J (1995) Detergent stabilization of proteins against surface and freezing denaturation. Pharm Res 12:85

    Article  Google Scholar 

  • Kennedy D, SKILLBN A, Self C (1994) Glycation of monoclonal antibodies impairs their ability to bind antigen. Clin Exp Immunol 98:245–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerwin BA (2008) Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways. J Pharm Sci 97:2924–2935

    Article  CAS  PubMed  Google Scholar 

  • Kerwin BA, Akers MJ, Apostol I, Moore-Einsel C, Etter JE, Hess E, Lippincott J, Levine J, Mathews AJ, Revilla-Sharp P (1999) Acute and long-term stability studies of deoxy hemoglobin and characterization of ascorbate-induced modifications. J Pharm Sci 88:79–88

    Article  CAS  PubMed  Google Scholar 

  • Kiese S, Papppenberger A, Friess W, Mahler HC (2008) Shaken, not stirred: mechanical stress testing of an IgG1 antibody. J Pharm Sci 97:4347–4366

    Article  CAS  PubMed  Google Scholar 

  • Kim NA, Lim DG, Lim JY, Kim KH, Shim WS, Kang N-G, Jeong SH (2014) Evaluation of protein formulation and its viscosity with DSC, DLS, and microviscometer. J Pharm Investig 44:309–316

    Article  CAS  Google Scholar 

  • Kita Y, Arakawa T, Lin T-Y, Timasheff SN (1994) Contribution of the surface free energy perturbation to protein-solvent interactions. BioChemistry 33:15178–15189

    Article  CAS  PubMed  Google Scholar 

  • Knapp S, Mattson PT, Christova P, Berndt KD, Karshikoff A, Vihinen M, Smith C, Ladenstein R (1998) Thermal unfolding of small proteins with SH3 domain folding pattern. Proteins Struct Funct Bioinform 31:309–319

    Article  CAS  Google Scholar 

  • Koren E, Zuckerman L, Mire-Sluis A (2002) Immune responses to therapeutic proteins in humans-clinical significance, assessment and prediction. Curr Pharm Biotechnol 3:349–360

    Article  CAS  PubMed  Google Scholar 

  • Krayukhina E, Tsumoto K, Uchiyama S, Fukui K (2015) Effects of syringe material and silicone oil lubrication on the stability of pharmaceutical proteins. J Pharm Sci 104:527–535

    Article  CAS  PubMed  Google Scholar 

  • Kreilgaard L, Frokjaer S, Flink JM, Randolph TW, Carpenter JF (1998a) Effects of additives on the stability of recombinant human factor XIII during freeze-drying and storage in the dried solid. Arch Biochem Biophys 360:121–134

    Article  CAS  PubMed  Google Scholar 

  • Kreilgaard L, Jones LS, Randolph TW, Frokjaer S, Flink JM, Manning MC, Carpenter JF (1998b) Effect of Tween 20 on freeze-thawing-and agitation-induced aggregation of recombinant human factor XIII. J Pharm Sci 87:1597–1603

    Article  CAS  PubMed  Google Scholar 

  • Kueltzo LA, Wang W, Randolph TW, Carpenter JF (2008) Effects of solution conditions, processing parameters, and container materials on aggregation of a monoclonal antibody during freeze–thawing. J Pharm Sci 97:1801–1812

    Article  CAS  PubMed  Google Scholar 

  • Lai M, Topp E (1999) Solid-state chemical stability of proteins and peptides. J Pharm Sci 88:489–500

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, McAuley A, Schilke KF, McGuire J (2011) Molecular origins of surfactant-mediated stabilization of protein drugs. Adv Drug Deliv Rev 63:1160–1171

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Lin E-W, Lau UY, Hedrick JL, Bat E, Maynard HD (2013) Trehalose glycopolymers as excipients for protein stabilization. Biomacromolecules 14:2561–2569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Nguyen TH, Schöneich C, Borchardt RT (1995a) Aggregation and precipitation of human relaxin induced by metal-catalyzed oxidation. BioChemistry 34:5762–5772

    Article  CAS  PubMed  Google Scholar 

  • Li S, Schöneich C, Borchardt RT (1995b) Chemical instability of protein pharmaceuticals: mechanisms of oxidation and strategies for stabilization. Biotechnol Bioeng 48:490–500

    Article  CAS  PubMed  Google Scholar 

  • Lipiainen T, Peltoniemi M, Sarkhel S, Yrjonen T, Vuorela H, Urtti A, Juppo A (2015) Formulation and stability of cytokine therapeutics. J Pharm Sci 104:307–326

    Article  PubMed  CAS  Google Scholar 

  • Liu WR, Langer R, Klibanov AM (1991) Moisture-induced aggregation of lyophilized proteins in the solid state. Biotechnol Bioeng 37:177–184

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Wang DQ, Nai SL (2005) Freeze-drying of proteins from a sucrose-glycine excipient system: effect of formulation composition on the initial recovery of protein activity. AAPS PharmSciTech 6:E150–E157

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu L, Randolph TW, Carpenter JF (2012) Particles shed from syringe filters and their effects on agitation-induced protein aggregation. J Pharm Sci 101:2952–2959

    Article  CAS  PubMed  Google Scholar 

  • Ljutic B, Ochs M, Messham B, Ming M, Dookie A, Harper K, Ausar SF (2012) Formulation, stability and immunogenicity of a trivalent pneumococcal protein vaccine formulated with aluminum salt adjuvants. Vaccine 30:2981–2988

    Article  CAS  PubMed  Google Scholar 

  • Lopez CF, Darst RK, Rossky PJ (2008) Mechanistic elements of protein cold denaturation. J Phys Chem B 112:5961–5967

    Article  CAS  PubMed  Google Scholar 

  • Lueckel B, Helk B, Bodmer D, Leuenberger H (1998) Effects of formulation and process variables on the aggregation of freeze-dried interleukin-6 (IL-6) after lyophilization and on storage. Pharm Dev Technol 3:337–346

    Article  CAS  PubMed  Google Scholar 

  • Maa Y-F, Hsu CC (1996) Effect of high shear on proteins. Biotechnol Bioeng 51:458–465

    Article  CAS  PubMed  Google Scholar 

  • Maa Y-F, Hsu CC (1997) Protein denaturation by combined effect of shear and air-liquid interface. Biotechnol Bioeng 54:503–512

    Article  CAS  PubMed  Google Scholar 

  • MacRitchie F (1998) Reversibility of protein adsorption. In: Möbius D, Miller R (eds) Studies in interface science. Elsevier, Amsterdam, pp 149–177

    Google Scholar 

  • Mahler H-C, ̈ller RM, Frieb W, Delille A, Matheus S (2005) Induction and analysis of aggregates in a liquid IgG1-antibody formulation. Eur J Pharm Biopharm 59:407–417

    Article  CAS  PubMed  Google Scholar 

  • Mahler HC, Friess W, Grauschopf U, Kiese S (2009a) Protein aggregation: pathways, induction factors and analysis. J Pharm Sci 98:2909–2934

    Article  CAS  PubMed  Google Scholar 

  • Mahler HC, Senner F, Maeder K, Mueller R (2009b) Surface activity of a monoclonal antibody. J Pharm Sci 98:4525–4533

    Article  CAS  PubMed  Google Scholar 

  • Maity H, Karkaria C, Davagnino J (2009) Mapping of solution components, pH changes, protein stability and the elimination of protein precipitation during freeze–thawing of fibroblast growth factor 20. Int J Pharm 378:122–135

    Article  CAS  PubMed  Google Scholar 

  • Mancini RJ, Lee J, Maynard HD (2012) Trehalose glycopolymers for stabilization of protein conjugates to environmental stressors. JACS 134:8474–8479

    Article  CAS  Google Scholar 

  • Manning MC, Patel K, Borchardt RT (1989) Stability of protein pharmaceuticals. Pharm Res 6:903–918

    Article  CAS  PubMed  Google Scholar 

  • Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS (2010) Stability of protein pharmaceuticals: an update. Pharm Res 27:544–575

    Article  PubMed  CAS  Google Scholar 

  • Mayr LM, Schmid FX (1993) Stabilization of a protein by guanidinium chloride. BioChemistry 32:7994–7998

    Article  CAS  PubMed  Google Scholar 

  • Mensch CD, Davis HB (2012) Inhibition of tungsten-induced protein aggregation by cetyl trimethyl ammonium bromide. PDA J Pharm Sci Technol 66:2–11

    Article  CAS  PubMed  Google Scholar 

  • Morel M-H, Redl A, Guilbert S (2002) Mechanism of heat and shear mediated aggregation of wheat gluten protein upon mixing. Biomacromolecules 3:488–497

    Article  CAS  PubMed  Google Scholar 

  • Murphy KP, Bhakuni V, Xie D, Freire E (1992) Molecular basis of co-operativity in protein folding: III. Structural identification of cooperative folding units and folding intermediates. J Mol Biol 227:293–306

    Article  CAS  PubMed  Google Scholar 

  • Nabuchi Y, Fujiwara E, Ueno K, Kuboniwa H, Asoh Y, Ushio H (1995) Oxidation of recombinant human parathyroid hormone: effect of oxidized position on the biological activity. Pharm Res 12:2049–2052

    Article  CAS  PubMed  Google Scholar 

  • Nema S, Kenneth EA (1993) Freeze-thaw studies of a model protein, lactate dehydrogenase, in the presence of cryoprotectants. PDA J Pharm Sci Technol 47:76–83

    CAS  Google Scholar 

  • Nguyen TH, Shire SJ (2002) Stability and characterization of recombinant human relaxin. In: Pearlman R, Wang YJ (eds) Formulation, characterization, and stability of protein drugs. Plenum Press, New York, pp 247–274

    Chapter  Google Scholar 

  • O’brien J (1996) Stability of trehalose, sucrose and glucose to nonenzymatic browning in model systems. J Food Sci 61:679–682

    Article  Google Scholar 

  • Ohtake S, Kita Y, Arakawa T (2011) Interactions of formulation excipients with proteins in solution and in the dried state. Adv Drug Deliv Rev 63:1053–1073

    Article  CAS  PubMed  Google Scholar 

  • Oliyai C, Borchardt RT (1993) Chemical pathways of peptide degradation. IV. Pathways, kinetics, and mechanism of degradation of an aspartyl residue in a model hexapeptide. Pharm Res 10:95–102

    Article  CAS  PubMed  Google Scholar 

  • Oliyai C, Patel JP, Carr L, Borchardt RT (1994) Chemical pathways of peptide degradation. VII. Solid state chemical instability of an aspartyl residue in a model hexapeptide. Pharm Res 11:901–908

    Article  CAS  PubMed  Google Scholar 

  • Paborji M, Pochopin NL, Coppola WP, Bogardus JB (1994) Chemical and physical stability of Chimeric L6, a mouse–human monoclonal antibody. Pharm Res 11:764–771

    Article  CAS  PubMed  Google Scholar 

  • Pan H, Chen K, Chu L, Kinderman F, Apostol I, Huang G (2009) Methionine oxidation in human IgG2 Fc decreases binding affinities to protein A and FcRn. Protein Sci 18:424–433

    Article  CAS  PubMed  Google Scholar 

  • Pancoska P, Fabian H, Yoder G, Baumruk V, Keiderling TA (1996) Protein structural segments and their interconnections derived from optical spectra. Thermal unfolding of ribonuclease T1 as an example. BioChemistry 35:13094–13106

    Article  CAS  PubMed  Google Scholar 

  • Patel K, Borchardt RT (1990) Chemical pathways of peptide degradation. II. Kinetics of deamidation of an asparaginyl residue in a model hexapeptide. Pharm Res 7:703–711

    Article  CAS  PubMed  Google Scholar 

  • Patel R, Kumari M, Khan AB (2014) Recent advances in the applications of ionic liquids in protein stability and activity: a review. Appl Biochem Biotechnol 172:3701–3720

    Article  CAS  PubMed  Google Scholar 

  • Patil AJ, Muthusamy E, Mann S (2005) Fabrication of functional protein–organoclay lamellar nanocomposites by biomolecule-induced assembly of exfoliated aminopropyl-functionalized magnesium phyllosilicates. J Mater Chem 15:3838–3843

    Article  CAS  Google Scholar 

  • Pikal MJ, Shah S (1997) Intravial distribution of moisture during the secondary drying stage of freeze drying. PDA J Pharm Sci Technol 51:17–24

    CAS  PubMed  Google Scholar 

  • Pikal MJ, Dellerman KM, Roy ML, Riggin RM (1991) The effects of formulation variables on the stability of freeze-dried human growth hormone. Pharm Res 8:427–436

    Article  CAS  PubMed  Google Scholar 

  • Pogocki D, Ghezzo-Schöneich E, Schöneich C (2001) Conformational flexibility controls proton transfer between the methionine hydroxy sulfuranyl radical and the N-terminal amino group in Thr–(X) n–Met peptides. J Phys Chem B 105:1250–1259

    Article  CAS  Google Scholar 

  • Polanec J, Seppälä I, Rousseau S, Hedman K (1994) Evaluation of protein-denaturing immunoassays for avidity of immunoglobulin G to rubella virus. J Clin Lab Anal 8:16–21

    Article  CAS  PubMed  Google Scholar 

  • Powell MF (1994) Peptide stability in aqueous parenteral formulations. In: Cleland JL, Langer R (eds) Formulation and delivery of proteins and peptides. ACS Publications, Washington, DC, pp 100–117

    Chapter  Google Scholar 

  • Powell MF, Amphlett G, Cacia J, Callahan W, Cannova-Davis E, Chang B, Cleland JL, Darrington T, DeYoung L, Dhingra B (2002) A compendium and hydropathy/flexibility analysis of common reactive sites in proteins: reactivity at Asn, Asp, Gin, and Met motifs in neutral pH solution. In: Pearlman R, Wang YJ (eds) Formulation, characterization, and stability of protein drugs. Plenum Press, New York, pp 1–140

    Google Scholar 

  • Price KS, Hamilton RG (2007) Anaphylactoid reactions in two patients after omalizumab administration after successful long-term therapy. Allergy Asthma Proc 28:313–319

    Article  CAS  PubMed  Google Scholar 

  • Privalov PL (1990) Cold denaturation of protein. Crit Rev Biochem Mol Biol 25:281–306

    Article  CAS  PubMed  Google Scholar 

  • Qi P, Volkin DB, Zhao H, Nedved ML, Hughes R, Bass R, Yi SC, Panek ME, Wang D, DalMonte P (2009) Characterization of the photodegradation of a human IgG1 monoclonal antibody formulated as a high-concentration liquid dosage form. J Pharm Sci 98:3117–3130

    Article  CAS  PubMed  Google Scholar 

  • Quan CP, Wu S, Dasovich N, Hsu C, Patapoff T, Canova-Davis E (1999) Susceptibility of rhDNase I to glycation in the dry-powder state. Anal Chem 71:4445–4454

    Article  CAS  PubMed  Google Scholar 

  • Randolph TW, Jones LS (2002) Surfactant-protein interactions. In: Carpenter JF, Manning MC (eds) Rational design of stable protein formulations. Springer, Berlin, pp 159–175

    Chapter  Google Scholar 

  • Reubsaet JLE, Beijnen JH, Bult A, van Maanen RJ, Marchal JD, Underberg WJ (1998) Analytical techniques used to study the degradation of proteins and peptides: physical instability. J Pharm Biomed Anal 17:979–984

    Article  CAS  PubMed  Google Scholar 

  • Roberts D, Keeling R, Tracka M, Van Der Walle C, Uddin S, Warwicker J, Curtis R (2014) Specific ion and buffer effects on protein–protein interactions of a monoclonal antibody. Mol Pharm 12:179–193

    Article  PubMed  CAS  Google Scholar 

  • Robinson NE (2002) Protein deamidation. Proc Natl Acad Sci USA 99:5283–5288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson N, Robinson A (2004) Prediction of primary structure deamidation rates of asparaginyl and glutaminyl peptides through steric and catalytic effects. J Pept Res 63:437–448

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg AS (2006) Effects of protein aggregates: an immunologic perspective. AAPS J 8:E502–E507

    Article  Google Scholar 

  • Roser B (1991) Trehalose drying-A novel replacement for freeze-drying. Biopharm Technol Bus 4:47–52

    CAS  Google Scholar 

  • Roy S, Mason BD, Schöneich CS, Carpenter JF, Boone TC, Kerwin BA (2009) Light-induced aggregation of type I soluble tumor necrosis factor receptor. J Pharm Sci 98:3182–3199

    Article  CAS  PubMed  Google Scholar 

  • Runkel L, Meier W, Pepinsky RB, Karpusas M, Whitty A, Kimball K, Brickelmaier M, Muldowney C, Jones W, Goelz SE (1998) Structural and functional differences between glycosylated and non-glycosylated forms of human interferon-β (IFN-β). Pharm Res 15:641–649

    Article  CAS  PubMed  Google Scholar 

  • Rupley JA, Careri G (1991) Protein hydration and function. Adv Protein Chem 41:37–172

    Article  CAS  PubMed  Google Scholar 

  • Sacha GA, Saffell-Clemmer W, Abram K, Akers MJ (2010) Practical fundamentals of glass, rubber, and plastic sterile packaging systems. Pharm Dev Technol 15:6–34

    Article  CAS  PubMed  Google Scholar 

  • Salnikova MS, Middaugh CR, Rytting JH (2008) Stability of lyophilized human growth hormone. Int J Pharm 358:108–113

    Article  CAS  PubMed  Google Scholar 

  • Schein CH (1990) Solubility as a function of protein structure and solvent components. Nat Biotechnol 8:308–317

    Article  CAS  Google Scholar 

  • Schellekens H (2005) Factors influencing the immunogenicity of therapeutic proteins. Nephrol Dial Transplant 20(Suppl 6):vi3–vi9

    Article  CAS  PubMed  Google Scholar 

  • Schellekens H (2008) How to predict and prevent the immunogenicity of therapeutic proteins. In: El-Gewely MR (ed) Biotechnology annual review. Elsevier, Amsterdam, pp 191–202

    Chapter  Google Scholar 

  • Seidl A, Hainzl O, Richter M, Fischer R, Bohm S, Deutel B, Hartinger M, Windisch J, Casadevall N, London GM, Macdougall I (2012) Tungsten-induced denaturation and aggregation of epoetin alfa during primary packaging as a cause of immunogenicity. Pharm Res 29:1454–1467

    Article  CAS  PubMed  Google Scholar 

  • Shamblin SL, Hancock BC, Zografi G (1998) Water vapor sorption by peptides, proteins and their formulations. Eur J Pharm Biopharm 45:239–247

    Article  CAS  PubMed  Google Scholar 

  • Sharma B (2007) Immunogenicity of therapeutic proteins. Part 2: impact of container closures. Biotechnol Adv 25:318–324

    Article  CAS  PubMed  Google Scholar 

  • Shikama K, Yamazaki T (1961) Denaturation of catalase by freezing and thawing. Nature 190:83–84

    Article  CAS  Google Scholar 

  • Shimura K, Hoshino M, Kamiya K, Enomoto M, Hisada S, Matsumoto H, Novotny M, Kasai K-i (2013) Estimation of the deamidation rates of major deamidation sites in a Fab fragment of mouse IgG1-κ by capillary isoelectric focusing of mutated Fab fragments. Anal Chem 85:1705–1710

    Article  CAS  PubMed  Google Scholar 

  • Shiraki K, Tomita S, Inoue N (2016) Small amine molecules: solvent design toward facile improvement of protein stability against aggregation and inactivation. Curr Pharm Biotechnol 17:116–125

    Article  CAS  Google Scholar 

  • Shire SJ (2002) Stability characterization and formulation development of recombinant human deoxyribonuclease I [Pulmozyme®, (Dornase Alpha)]. In: Pearlman R, Wang YJ (eds) Formulation, characterization, and stability of protein drugs: case histories. Plenum Press, New York, pp 393–426

    Chapter  Google Scholar 

  • Shortle D (1996) The denatured state (the other half of the folding equation) and its role in protein stability. Faseb J 10:27–34

    CAS  PubMed  Google Scholar 

  • Sluzky V, Tamada JA, Klibanov AM, Langer R (1991) Kinetics of insulin aggregation in aqueous solutions upon agitation in the presence of hydrophobic surfaces. Proc Natl Acad Sci USA 88:9377–9381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sluzky V, Klibanov AM, Langer R (1992) Mechanism of insulin aggregation and stabilization in agitated aqueous solutions. Biotechnol Bioeng 40:895–903

    Article  CAS  PubMed  Google Scholar 

  • Smales CM, Pepper DS, James DC (2001) Protein modifications during antiviral heat bioprocessing and subsequent storage. Biotechnol Prog 17:974–978

    Article  CAS  PubMed  Google Scholar 

  • Soderquist M, Walton A (1980) Structural changes in proteins adsorbed on polymer surfaces. J Colloid Interface Sci 75:386–397

    Article  CAS  Google Scholar 

  • Son K, Kwon C (1995) Stabilization of human epidermal growth factor (hEGF) in aqueous formulation. Pharm Res 12:451–454

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Schowen RL, Borchardt RT, Topp EM (2001) Effect of ‘pH’on the rate of asparagine deamidation in polymeric formulations:‘pH’–rate profile. J Pharm Sci 90:141–156

    Article  CAS  PubMed  Google Scholar 

  • Song JG, Lee SH, Han HK (2016) Biophysical evaluation of aminoclay as an effective protectant for protein stabilization during freeze-drying and storage. Int J Nanomed 11:6609–6619

    Article  Google Scholar 

  • Steele RH, Limaye S, Cleland B, Chow J, Suranyi MG (2005) Hypersensitivity reactions to the polysorbate contained in recombinant erythropoietin and darbepoietin (Case Report). Nephrology 10:317–320

    Article  PubMed  Google Scholar 

  • Strambini GB, Gabellieri E (1996) Proteins in frozen solutions: evidence of ice-induced partial unfolding. Biophys J 1996:971–976

    Article  Google Scholar 

  • Strickley RG, Anderson BD (1997) Solid-state stability of human insulin. II. Effect of water on reactive intermediate partitioning in lyophiles from pH 2–5 solutions: stabilization against covalent dimer formation. J Pharm Sci 86:645–653

    Article  CAS  PubMed  Google Scholar 

  • Taha M, Lee MJ (2010) Interactions of TRIS [tris(hydroxymethyl)aminomethane] and related buffers with peptide backbone: thermodynamic characterization. Phys Chem Chem Phys 12:12840–12850

    Article  CAS  PubMed  Google Scholar 

  • Takano K, Tsuchimori K, Yamagata Y, Yutani K (2000) Contribution of salt bridges near the surface of a protein to the conformational stability. BioChemistry 39:12375–12381

    Article  CAS  PubMed  Google Scholar 

  • Tamiya T, Okahashi N, Sakuma R, Aoyama T, Akahane T, Matsumoto JJ (1985) Freeze denaturation of enzymes and its prevention with additives. Cryobiology 22:446–456

    Article  CAS  PubMed  Google Scholar 

  • Tamizi E, Jouyban A (2016) Forced degradation studies of biopharmaceuticals: selection of stress conditions. Eur J Pharm Biopharm 98:26–46

    Article  CAS  PubMed  Google Scholar 

  • Thiering R, Dehghani F, Dillow A, Foster NR (2000) The influence of operating conditions on the dense gas precipitation of model proteins. J Chem Technol Biotechnol 75:29–41

    Article  CAS  Google Scholar 

  • Thirumangalathu R, Krishnan S, Ricci MS, Brems DN, Randolph TW, Carpenter JF (2009) Silicone oil- and agitation-induced aggregation of a monoclonal antibody in aqueous solution. J Pharm Sci 98:3167–3181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thurow H, Geisen K (1984) Stabilisation of dissolved proteins against denaturation at hydrophobic interfaces. Diabetologia 27:212–218

    CAS  PubMed  Google Scholar 

  • Timasheff SN (1993) The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu Rev Biophys Biomol Struct 22:67–97

    Article  CAS  PubMed  Google Scholar 

  • Treuheit MJ, Kosky AA, Brems DN (2002) Inverse relationship of protein concentration and aggregation. Pharm Res 19:511–516

    Article  CAS  PubMed  Google Scholar 

  • Tyler-Cross R, Schirch V (1991) Effects of amino acid sequence, buffers, and ionic strength on the rate and mechanism of deamidation of asparagine residues in small peptides. J Biol Chem 266:22549–22556

    CAS  PubMed  Google Scholar 

  • Uversky VN, Gillespie JR, Millett IS, Khodyakova AV, Vasiliev AM, Chernovskaya TV, Vasilenko RN, Kozlovskaya GD, Dolgikh DA, Fink AL (1999) Natively unfolded human prothymosin α adopts partially folded collapsed conformation at acidic pH. BioChemistry 38:15009–15016

    Article  CAS  PubMed  Google Scholar 

  • Van Den Berg L (1966) pH changes in buffers and foods during freezing and subsequent storage. Cryobiology 3:236–242

    Article  Google Scholar 

  • Vanhooren A, Devreese B, Vanhee K, Van Beeumen J, Hanssens I (2002) Photoexcitation of tryptophan groups induces reduction of two disulfide bonds in goat α-lactalbumin. BioChemistry 41:11035–11043

    Article  CAS  PubMed  Google Scholar 

  • Vazquez-Rey M, Lang DA (2011) Aggregates in monoclonal antibody manufacturing processes. Biotechnol Bioeng 108:1494–1508

    Article  CAS  PubMed  Google Scholar 

  • Vermeer AWP, Bremer MGEG, Norde W (1998) Structural changes of IgG induced by heat treatment and by adsorption onto a hydrophobic Teflon surface studied by circular dichroism spectroscopy. Biochim Biophys Acta 1425:1–12

    Article  CAS  PubMed  Google Scholar 

  • Virkar PD, Narendranathan TJ, Hoare M, Dunnill P (1981) Studies of the effects of shear on globular proteins: extension to high shear fields and to pumps. Biotechnol Bioeng 23:425–429

    Article  CAS  Google Scholar 

  • Volkin DB, Klibanov AM (1987) Thermal destruction processes in proteins involving cystine residues. J Biol Chem 262:2945–2950

    CAS  PubMed  Google Scholar 

  • Vrkljan M, Foster TM, Powers ME, Henkin J, Porter WR, Staack H, Carpenter JF, Manning MC (1994) Thermal stability of low molecular weight urokinase during heat treatment. II. Effect of polymeric additives. Pharm Res 11:1004–1008

    Article  CAS  PubMed  Google Scholar 

  • Wakankar AA, Borchardt RT (2006) Formulation considerations for proteins susceptible to asparagine deamidation and aspartate isomerization. J Pharm Sci 95:2321–2336

    Article  CAS  PubMed  Google Scholar 

  • Wang W (1999) Instability stabilization and formulation of liquid protein pharmaceuticals. Int J Pharm 185:129–188

    Article  CAS  PubMed  Google Scholar 

  • Wang W (2000) Lyophilization and development of solid protein pharmaceuticals. Int J Pharm 203:1–60

    Article  CAS  PubMed  Google Scholar 

  • Wang W (2005) Protein aggregation and its inhibition in biopharmaceutics. Int J Pharm 289:1–30

    Article  CAS  PubMed  Google Scholar 

  • Wang PL, Johnston TP (1993) Enhanced stability of two model proteins in an agitated solution environment using poloxamer 407. PDA J Pharm Sci Technol 47:183–189

    CAS  Google Scholar 

  • Wang W, Singh S, Zeng DL, King K, Nema S (2007) Antibody structure, instability, and formulation. J Pharm Sci 96:1–26

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Nema S, Teagarden D (2010) Protein aggregation—pathways and influencing factors. Int J Pharm 390:89–99

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Meeler AR, Bergerud LT, Hesselberg M, Byrne M, Wu Z (2012) Quantification and characterization of antibody deamidation by peptide mapping with mass spectrometry. Int J Mass Spectrom 312:107–113

    Article  CAS  Google Scholar 

  • Wang W, Ignatius AA, Thakkar SV (2014) Impact of residual impurities and contaminants on protein stability. J Pharm Sci 103:1315–1330

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wu G, Zhang X, Tian Z, Zhang N, Hu T, Dai W, Qian F (2017) Stabilizing two IgG1 monoclonal antibodies by surfactants: balance between aggregation prevention and structure perturbation. Eur J Pharm Biopharm 114:263–277

    Article  CAS  PubMed  Google Scholar 

  • Webb SD, Webb JN, Hughes TG, Sesin DF, Kincaid AC (2002) Freezing biopharmaceuticals using common techniques and the magnitude of bulk-scale freeze-concentration. BioPharm Int 15:22–34

    Google Scholar 

  • Webb SD, Cleland JL, Carpenter JF, Randolph TW (2003) Effects of annealing lyophilized and spray-lyophilized formulations of recombinant human interferon-γ. J Pharm Sci 92:715–729

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Chen L, Chen J, Ge L, He RQ (2009) Rapid glycation with D-ribose induces globular amyloid-like aggregations of BSA with high cytotoxicity to SH-SY5Y cells. BMC Cell Biol 10:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wen ZQ, Torraca G, Masatani P, Sloey C, Phillips J (2012) Nondestructive detection of glass vial inner surface morphology with differential interference contrast microscopy. J Pharm Sci 101:1378–1384

    Article  CAS  PubMed  Google Scholar 

  • Werner BP, Winter G (2015) Particle contamination of parenteralia and in-line filtration of proteinaceous drugs. Int J Pharm 496:250–267

    Article  CAS  PubMed  Google Scholar 

  • Wiesbauer J, Prassl R, Nidetzky B (2013) Renewal of the air-water interface as a critical system parameter of protein stability: aggregation of the human growth hormone and its prevention by surface-active compounds. Langmuir 29:15240–15250

    Article  CAS  PubMed  Google Scholar 

  • Won CM, Molnar TE, Mckean RE, Spenlehauer GA (1998) Stabilizers against heat-induced aggregation of RPR 114849, an acidic fibroblast growth factor (aFGF). Int J Pharm 167:25–36

    Article  Google Scholar 

  • Wuthrich K (1989) Protein structure determination in solution by nuclear magnetic resonance spectroscopy. Science 243:45

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Lee Y-C, Kim MI, Park HG, Huh YS, Shao Y, Han H-K (2014) Biodistribution and clearance of aminoclay nanoparticles: implication for in vivo applicability as a tailor-made drug delivery carrier. J Mater Chem B 2:7567–7574

    Article  CAS  Google Scholar 

  • Yang L, Shao Y, Han HK (2016) Aminoclay-lipid hybrid composite as a novel drug carrier of fenofibrate for the enhancement of drug release and oral absorption. Int J Nanomed 11:1067–1076

    CAS  Google Scholar 

  • Zhang J, Kalonia DS (2007) The effect of neighboring amino acid residues and solution environment on the oxidative stability of tyrosine in small peptides. AAPS PharmSciTech 8:176–183

    Article  PubMed Central  Google Scholar 

  • Zhang Q, Ames JM, Smith RD, Baynes JW, Metz TO (2009) A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: probing the pathogenesis of chronic disease. J Proteome Res 8:754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Mozziconacci O, Kerwin BA, Schöneich C (2013) The photolysis of disulfide bonds in IgG1 and IgG2 leads to selective intramolecular hydrogen transfer reactions of cysteine Thiyl radicals, probed by covalent H/D exchange and RPLC-MS/MS analysis. Pharm Res 30:1291–1299

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2016R1A2B2010097) and by a grant (16173MFDS542) from Ministry of Food and Drug Safety.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyo-Kyung Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal rights

This article does not contain any studies with human and animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J.G., Lee, S.H. & Han, HK. The stabilization of biopharmaceuticals: current understanding and future perspectives. Journal of Pharmaceutical Investigation 47, 475–496 (2017). https://doi.org/10.1007/s40005-017-0341-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-017-0341-9

Keywords

Navigation