Skip to main content

Advertisement

Log in

Analysis and optimization of drug solubility to improve pharmacokinetics

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Solubility measurement is one of the key elements that need to be considered in drug discovery and development process. Hence, its appropriate analysis and optimization is necessary to enhance the drug’s pharmacokinetic and therapeutic effects. In this article, different methods used for solubility analysis and optimization such as shake flask, potentiometric, turbidimetric, computational, miniature device and high throughput automated methods have been summarized. Additionally, the effect of solubility optimization methods (physical, chemical and carrier technology modifications) on pharmacokinetic enhancement has also been elucidated. New fast, feasible and automated methods of solubility analysis are necessary for its accurate measurement as well as for minimization of errors posed by traditional methods. Among the physical, chemical and carrier modification methods; higher potential is exhibited by nanoparticulate drug delivery carriers for optimization of drug solubility and enhancement of pharmacokinetics. Based on the drug characteristics and delivery requirement, appropriate method can be chosen for efficient solubility and pharmacokinetics enhancement of lipophilic drugs, especially of BCS class II and class IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alavijeh MS, Chishty M, Qaiser MZ et al (2005) Drug metabolism and pharmacokinetics, the blood–brain barrier, and the central nervous system drug discovery. NeuroRx® 2:554–571

    Article  PubMed  PubMed Central  Google Scholar 

  • Ale EC, Maggio B, Fanani ML (2012) Ordered-disordered domain coexistence in ternary lipid monolayers activates sphingomyelinase by clearing ceramide from the active phase. Biochim Biophys Acta 1818:2767–2776

    Article  CAS  PubMed  Google Scholar 

  • Ali HS, York P, Blagden N (2009) Preparation of hydrocortisone nanosuspension through a bottom-up nanoprecipitation technique using microfluidic reactors. Int J Pharm 375:107–113

    Article  CAS  PubMed  Google Scholar 

  • Alonzo DE, Zhang GG, Zhou D et al (2010) Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm Res 27(4):608–618

    Article  CAS  PubMed  Google Scholar 

  • Amidon GL, Lennernas H, Shah VP et al (1995) A theoretical basis for a biopharmaceutics drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12:413–420

    Article  CAS  PubMed  Google Scholar 

  • Anwar M, Warsi MH, Mallick N et al (2011) Enhanced bioavailability of nano-sized chitosan-atorvastatin conjugate after oral administration to rats. Eur J Pharm Sci 44:241–249

    Article  CAS  PubMed  Google Scholar 

  • Atef E, Belmonte AA (2008) Formulation and in vitro and in vivo characterization of a phenytoin self-emulsifying drug delivery system (SEDDS). Eur J Pharm Sci 35:257–263

    Article  CAS  PubMed  Google Scholar 

  • Athawale RB, Jain DS, Singh KK et al (2014) Etoposide loaded solid lipid nanoparticles for curtailing B16F10 melanoma colonization in lung. Biomed Pharmacother 68:231–240

    Article  CAS  PubMed  Google Scholar 

  • Avdeef A, Testa B (2002) Physicochemical profiling in drug research: a brief survey of the state-of-the-art of experimental techniques. Cell Mol Life Sci 59:1681–1689

    Article  CAS  PubMed  Google Scholar 

  • Baek HH, Kwon SY, Rho SJ et al (2011) Enhanced solubility and bioavailability of flurbiprofen by cycloamylose. Arch Pharm Res 34:391–397

    Article  CAS  PubMed  Google Scholar 

  • Balani PN, Wong SY, Ng WK et al (2010) Influence of polymer content on stabilizing milled amorphous salbutamol sulphate. Int J Pharm 391:125–136

    Article  CAS  PubMed  Google Scholar 

  • BergstrÓ§m CA, Norinder U, Luthman K, Artursson P (2002) Experimental and computational screening models for prediction of aqueous drug solubility. Pharm Res19:182–188

    Article  Google Scholar 

  • Bourkaib N, Zhou J, Yao J et al (2013) Combination of β-cyclodextrin inclusion complex and self-microemulsifying drug delivery system for photostability and enhanced oral bioavailability of methotrexate: novel technique. Drug Dev Ind Pharm 39(6):918–927

    Article  CAS  PubMed  Google Scholar 

  • Čerpnjak K, Zvonar A, Vrečer F et al (2014) Development of a solid self-microemulsifying drug delivery system (SMEDDS) for solubility enhancement of naproxen. Drug Dev Ind Pharm 13:1–10

    Google Scholar 

  • Chen XQ, Venkatesh S (2004) Miniature device for aqueous and non-aqueous solubility measurements during drug discovery. Pharm Res 21:1758–1761

    Article  CAS  PubMed  Google Scholar 

  • Chi L, Liu R, Guo T et al (2015) Dramatic improvement of the solubility of pseudolaric acid B by cyclodextrin complexation: preparation, characterization and validation. Int J Pharm 479:349–356

    Article  CAS  PubMed  Google Scholar 

  • Chiou WL, Riegelman S (1969) Preparation and dissolution characteristics of several fast-release solid dispersion of griseofulvin. J Pharm Sci 58:1505–1510

    Article  CAS  PubMed  Google Scholar 

  • Cho JH, Kim YI, Kim DW et al (2014) Development of novel fast-dissolving tacrolimus solid dispersion-loaded prolonged release tablet. Eur J Pharm Sci 54:1–7

    Article  CAS  PubMed  Google Scholar 

  • Cornaire G, Woodley J, Hermann P et al (2004) Impact of excipients on the absorption of p-glycoprotein substrates in vitro and in vivo. Int J Pharm 278:119–131

    Article  CAS  PubMed  Google Scholar 

  • Custodio JM, Wu CY, Benet LZ (2008) Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption. Adv Drug Deliv Rev 60:717–733

    Article  CAS  PubMed  Google Scholar 

  • Dahan A, Miller JM (2012) The solubility-permeability interplay and its implications in formulation design and development for poorly soluble drugs. AAPS J 14:244–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Detroja C, Chavhan S, Sawant K (2011) Enhanced antihypertensive activity of candesartan cilexitil nanosuspension: formulation, characterization and pharmacodynamic study. Sci Pharm 79:635–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiPiro JT, Spruill WJ, Wade WE et al (2010) Concept in clinical pharmacokinetics. American Society of Health-System Pharmacists, Bethesda

    Google Scholar 

  • Elsayed I, Abdelbary AA, Elshafeey AH (2014) Nanosizing of a poorly soluble drug: technique optimization, factorial analysis, and pharmacokinetic study in healthy human volunteers. Int J Nanomed 9:2943–2953

    CAS  Google Scholar 

  • Erez R, Segal E, Miller K et al (2009) Enhanced cytotoxicity of a polymer-drug conjugate with triple payload of paclitaxel. Bioorg Med Chem 17:4327–4335

    Article  CAS  PubMed  Google Scholar 

  • Gaba B, Fazil M, Ali A et al (2015) Nanostructured lipid (NLCs) carriers as a bioavailability enhancement tool for oral administration. Drug Deliv 22:691–700

    Article  CAS  PubMed  Google Scholar 

  • Gershanik T, Benita S (2000) Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur J Pharm Biopharm 50:179–188

    Article  CAS  PubMed  Google Scholar 

  • Glomme A, März J, Dressman JB (2005) Comparison of a miniaturized shake-flask solubility method with automated potentiometric acid/base titrations and calculated solubilities. J Pharm Sci 94:1–16

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Zhong S, Li N et al (2013) Dissolution enhancement of cefdinir with hydroxypropyl-β-cyclodextrin. Drug Dev Ind Pharm 39:1638–1643

    Article  CAS  PubMed  Google Scholar 

  • Gupta U, Agashe HB, Jain NK (2007) Polypropylene imine dendrimer mediated solubility enhancement: effect of pH and functional groups of hydrophobes. J Pharm Pharm Sci 10:358–367

    CAS  PubMed  Google Scholar 

  • Gupta B, Poudel BK, Tran TH et al (2015) Modulation of pharmacokinetic and cytotoxicity profile of imatinib base by employing nanostructured lipid carriers. Pharm Res 32:2912–2927

    Article  CAS  PubMed  Google Scholar 

  • Hancock BC, Zografi G (1997) Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci 86:1–12

    Article  CAS  PubMed  Google Scholar 

  • Hao HX, Hou BH, Wang JK et al (2005) Solubility of erythritol in different solvents. J Chem Eng Data 50:1454–1456

    Article  CAS  Google Scholar 

  • Hashem FM, Al-Sawahli MM, Nasr M et al (2015) Custom fractional factorial designs to develop atorvastatin self-nanoemulsifying and nanosuspension delivery systems—enhancement of oral bioavailability. Drug Des Dev Ther 9:3141–3152

    Google Scholar 

  • Hu L, Tang X, Cui F (2004) Solid lipid nanoparticles (SLNs) to improve oral bioavailability of poorly soluble drugs. J Pharm Pharmacol 56:1527–1535

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Zhang B, Gao Y et al (2014) Baicalein-nicotinamide cocrystal with enhanced solubility, dissolution, and oral bioavailability. J Pharm Sci 103:2330–2337

    Article  CAS  PubMed  Google Scholar 

  • Humberstone AJ, Charman WN (1997) Lipid-based vehicles for the oral delivery of poorly water soluble drugs. Adv Drug Deliv Rev 25:103–128

    Article  CAS  Google Scholar 

  • Huuskonen J, Salo M, Taskinen J (1998) Aqueous solubility prediction of drugs based on molecular topology and neural network modeling. J Chem Inf Comput Sci 38:450–456

    Article  CAS  PubMed  Google Scholar 

  • Hwang DH, Kim YI, Cho KH et al (2014) A novel solid dispersion system for natural product-loaded medicine: silymarin-loaded solid dispersion with enhanced oral bioavailability and hepatoprotective activity. J Microencapsul 31:619–626

    Article  CAS  Google Scholar 

  • IUPAC (1997) Compendium of chemical terminology. Blackwell, Oxford

    Google Scholar 

  • Jakki R, Afzal Syed M, Kandadi P et al (2013) Development of a self-microemulsifying drug delivery system of domperidone: in vitro and in vivo characterization. Acta Pharm 63:241–251

    Article  CAS  PubMed  Google Scholar 

  • Jing-ling T, Jin S, Zhong-Gui H (2007) Emulsifying drug delivery systems: strategy for improving oral delivery of poorly soluble drugs. Curr Drug Ther 2:85–93

    Article  Google Scholar 

  • Jouyban-Gharamaleki V, Jouyban-Gharamaleki K, Shayanfar A et al (2015) An automated system for determining drug solubility based on laser monitoring technique. J Lab Autom 20(1):3–9

    Article  CAS  PubMed  Google Scholar 

  • Junghanns JUA, Müller RH (2008) Nanocrystal technology, drug delivery and clinical applications. Int J Nanomed 3:295–310

    CAS  Google Scholar 

  • Kale AA, Vandana BP (2008) Design and evaluation of self-emulsifying drug delivery systems (SEDDS) of nimodipine. AAPS Pharm Sci Tech 9:191–196

    Article  CAS  Google Scholar 

  • Kang BK, Lee JS, Chon SK et al (2004) Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs. Int J Pharm 274:65–73

    Article  CAS  PubMed  Google Scholar 

  • Kang JH, Oh DH, Oh YK et al (2012) Effects of solid carriers on the crystalline properties, dissolution and bioavailability of flurbiprofen in solid self-nanoemulsifying drug delivery system (solid SNEDDS). Eur J Pharm Biopharm 80:289–297

    Article  CAS  PubMed  Google Scholar 

  • Karvas E, Ktistis G, Xenakis A et al (2006) Effect of hydrogen bonding interaction on release mechanism of felodipine from nanodispersion with polyvinylpyrrolidone. Eur J Pharm Biopharm 63:103–114

    Article  CAS  Google Scholar 

  • Kathe N, Henriksen B, Chauhan H (2014) Physicochemical characterization techniques for solid lipid nanoparticles: principles and limitations. Drug Dev Ind Pharm 40:1565–1575

    Article  CAS  PubMed  Google Scholar 

  • Ke W, Zhao Y, Huang R et al (2008) Enhanced oral bioavailability of doxorubicin in a dendrimer drug delivery system. J Pharm Sci 97:2208–2216

    Article  CAS  PubMed  Google Scholar 

  • Khan F, Islam MS, Roni MA et al (2012) Systematic development of self-microemulsifying drug delivery systems of atorvastatin with improved bioavailability potential. Sci Pharm 80(4):1027–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DW, Kang JH, Oh DH et al (2012) Development of novel flurbiprofen-loaded solid self-microemulsifying drug delivery system using gelatin as solid carrier. J Microencapsul 29:323–330

    Article  CAS  PubMed  Google Scholar 

  • Kim GG, Poudel BK, Marasini N et al (2013a) Enhancement of oral bioavailability of fenofibrate by solid self-microemulsifying drug delivery systems. Drug Dev Ind Pharm 39:1431–1438

  • Kim MS, Kim JS, Cho WK et al (2013b) Enhanced solubility and oral absorption of sirolimus using D-α-tocopheryl polyethylene glycol succinate micelles. Artif Cells Nanomed Biotechnol 41:85–91

  • Kim YH, Kim DW, Kwon MS et al (2015) Clopidogrel napadisilate monohydrate loaded surface-modifies solid dispersion: physicochemical characterization and in vivo evaluation. Biol Pharm Bull 38:1033–1040

    Article  CAS  PubMed  Google Scholar 

  • Kommuru T, Khan M, Reddy I (2001) Self emulsifying drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int J Pharm 212:233–246

    Article  CAS  PubMed  Google Scholar 

  • Kufe DW, Pollock RE, Weichselbaum RR et al (2003) Holland-Frei cancer medicine. BC Decker, Hamilton

    Google Scholar 

  • Kumar N, Bansal G, Kumar S et al (2012) Ditosylate salt of itraconazole and dissolution enhancement using cyclodextrins. AAPS Pharm Sci Tech 13:863–874

    Article  CAS  Google Scholar 

  • Lachman L, Lieberman H, Kanig JL (1986) The theory and practice of industrial pharmacy. Lea and Febiger, Philadelphia

    Google Scholar 

  • Law D, Wang W, Schmitt EA et al (2003) Properties of rapidly dissolving eutectic mixtures of poly(ethylene glycol) and fenofibrate: the eutectic microstructure. J Pharm Sci 92:505–515

    Article  CAS  PubMed  Google Scholar 

  • Lee SN, Poudel BK, Tran TH et al (2013) A novel surface-attached carvedilol solid dispersion with enhanced solubility and dissolution. Arch Pharm Res 36:79–85

    Article  CAS  PubMed  Google Scholar 

  • Lee DW, Marasini N, Poudel BK et al (2014) Application of Box-Behnken design in the preparation and optimization of fenofibrate-loaded self-microemulsifying drug delivery system (SMEDDS). J Microencapsul 31:31–40

    Article  CAS  PubMed  Google Scholar 

  • Leleux J, Williams RO III (2014) Recent advancements in mechanical reduction methods: particulate systems. Drug Dev Ind Pharm 40:289–300

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yin Q, Chen W et al (2006) Solubility of hydroquinone in different solvents from 276.65 to 345.10 K. J Chem Eng Data 51:127–129

    Article  CAS  Google Scholar 

  • Li Y, Bi Y, Xi Y et al (2013) Enhancement on oral absorption of paclitaxel by multifunctional pluronic micelles. J Drug Target 21(2):188–199

    Article  CAS  PubMed  Google Scholar 

  • Liu LS, Kim JM, Kim WS (2015) Simple and reliable quartz crystal microbalance technique for determination of solubility by cooling and heating solution. Anal Chem 7:3329–3335

    Article  CAS  Google Scholar 

  • LÓ§bmann K, Laitinen R, Grohganz H et al (2011) Coamorphous drug systems: enhanced physical stability and dissolution rate of indomethacin and naproxen. Mol Pharm 8:1919–1928

    Article  CAS  Google Scholar 

  • Madan J, Dhiman N, Parmar VK et al (2010) Inclusion complexes of noscapine in beta-cyclodextrin offer better solubility and improved pharmacokinetics. Cancer Chemother Pharmacol 65:537–548

    Article  CAS  PubMed  Google Scholar 

  • Marasini N, Tran TH, Poudel BK et al (2013) Fabrication and evaluation of pH-modulated solid dispersion for telmisartan by spray-drying technique. Int J Pharm 441:424–432

    Article  CAS  PubMed  Google Scholar 

  • Maulik JP, Sanjay SP, Natvarlal MP (2010) Self-microemulsifying drug delivery system. Int J Pharm Sci Rev Res 4(29):35

    Google Scholar 

  • Mezghrani O, Ke X, Bourkaib N et al (2011) Optimized self-microemulsifying drug delivery systems (SMEDDS) for enhanced oral bioavailability of astilbin. Pharmazie 66:754–760

    CAS  PubMed  Google Scholar 

  • Milewski M, Pinninti RR, Stinchcomb AL (2012) Naltrexone salt selection for enhanced transdermal permeation through microneedle-treated skin. J Pharm Sci 101:2777–2786

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Agrawal S, Pathak K (2012) Naproxen glycine conjugate-synthesis, pharmaceutical preformulation and pharmacodynamic evaluation. Drug Deliv 19:102–111

    Article  CAS  PubMed  Google Scholar 

  • Mu CF, Balakrishnan P, Cui FD et al (2010) The effects of mixed MPEG-PLA/pluronic copolymer micelles on the bioavailability and multidrug resistance of docetaxel. Biomaterials 31:2371–2379

    Article  CAS  PubMed  Google Scholar 

  • Murdande SB, Pikal MJ, Shanker RM et al (2010) Solubility advantage of amorphous pharmaceuticals: I. A thermodynamic analysis. J Pharm Sci 99:1254–1264

    Article  CAS  PubMed  Google Scholar 

  • Nair AB, Attimarad M, Al-Dhubiab BE et al (2014) Enhanced oral bioavailability of acyclovir by inclusion complex using hydroxypropyl-β-cyclodextrin. Drug Deliv 21:540–547

    Article  CAS  PubMed  Google Scholar 

  • Nielsen LH, Gordon S, Holm R et al (2013) Preparation of an amorphous sodium furosemide salt improves solubility and dissolution rate and leads to a faster Tmax after oral dosing to rats. Eur J Pharm Biopharm 85:942–951

    Article  CAS  PubMed  Google Scholar 

  • O’Driscoll CM (2002) Lipid-based formulations for intestinal lymphatic delivery. Eur J Pharm Sci 15:405–415

    Article  PubMed  Google Scholar 

  • Patravale VB, Date AA, Kulkarni RM (2004) Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol 56:827–840

    Article  CAS  PubMed  Google Scholar 

  • Pokharkar VB, Mandpe LP, Padamwar MN et al (2006) Development, characterization and solubilization of amorphous form of low Tg drug. Powder Technol 167:20–25

    Article  CAS  Google Scholar 

  • Pradhan R, Tran TH, Choi JY et al (2015) Development of a rebamipide solid dispersion system with improved dissolution and oral bioavailability. Arch Pharm Res 38:522–533

    Article  CAS  PubMed  Google Scholar 

  • Puntawee S, Theerasilp M, Reabroi S et al (2015) Solubility enhancement and in vitro evaluation of PEG-b-PLA micelles as nanocarrier of semi-synthetic andrographolide analogue for cholangiocarcinoma chemotherapy. Pharm Dev Technol 21:437–444

    PubMed  Google Scholar 

  • Ramasamy T, Kim JH, Choi JY et al (2014) pH sensitive polyelectrolyte complex micelles for highly effective combination chemotherapy. J Mater Chem B 2:6324–6333

    Article  CAS  Google Scholar 

  • Rashid R, Kim DW, ud Din F et al (2015) Effect of hydroxypropylcellulose and Tween 80 on physicochemical properties and bioavailability of ezetimibe-loaded solid dispersion. Carbohydr Polym 130:26–31

    Article  CAS  PubMed  Google Scholar 

  • Reviakine I, Johannsmann D, Richter RP (2011) Hearing what you cannot see and visualizing what you hear: Interpreting quartz crystal microbalance data from solvated surfaces. Anal Chem 83:8838–8848

    Article  CAS  PubMed  Google Scholar 

  • Ruell J, Avdeef A (2003) A measured solution. Mod Drug Disc 2003:47–49

    Google Scholar 

  • Sanka K, Munjulury VS, Mohd AB et al (2014) Enhancement of solubility, dissolution release profile and reduction in ulcerogenecity of piroxicam by inclusion complex with skimmed milk. Drug Deliv 21:560–570

    Article  CAS  PubMed  Google Scholar 

  • Seo YG, Kim DH, Ramasamy T et al (2013) Development of docetaxel-loaded solid self-nanoemulsifying drug delivery system (SNEDDS) for enhanced chemotherapeutic effect. Int J Pharm 452:412–420

    Article  CAS  PubMed  Google Scholar 

  • Serajuddin AT (2007) Salt formation to improve drug solubility. Adv Drug Deliv Rev 59:603–616

    Article  CAS  PubMed  Google Scholar 

  • Sha X, Wu J, Chen Y et al (2012) Self-microemulsifying drug-delivery system for improved oral bioavailability of probucol: preparation and evaluation. Int J Nanomed 7:705–712

    Article  CAS  Google Scholar 

  • Shaikh SM, Avachat AM (2011) Enhancement of solubility and permeability of candesartan cilexetil by using different pharmaceutical interventions. Curr Drug Deliv 8(4):346–353

    Article  CAS  PubMed  Google Scholar 

  • Shanmugam S, Baskaran R, Balakrishnan P et al (2011) Solid self-nanoemulsifying drug delivery system (S-SNEDDS) containing phosphatidylcholine for enhanced bioavailability of highly lipophilic bioactive carotenoid lutein. Eur J Pharm Biopharm 79:250–257

    Article  CAS  PubMed  Google Scholar 

  • Shen Q, Li X, Li W et al (2011) Enhanced intestinal absorption of daidzein by borneol/menthol eutectic mixture and microemulsion. AAPS Pharm Sci Tech 12:1044–1049

    Article  CAS  Google Scholar 

  • Shevchenko A, Bimbo LM, Miroshnyk I et al (2012) A new cocrystal and salts of itraconazole: comparison of solid-state properties, stability and dissolution behavior. Int J Pharm 436:403–409

    Article  CAS  PubMed  Google Scholar 

  • Singh G, Pai RS (2014) Optimized self-nanoemulsifying drug delivery system of atazanavir with enhanced oral bioavailability: in vitro/in vivo characterization. Expert Opin Drug Deliv 11:1023–1032

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Worku ZA, Van den Mooter G (2011) Oral formulation strategies to improve solubility of poorly water-soluble drugs. Expert Opin Drug Deliv 8:1361–1378

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Singh R, Bandyopadhyay S et al (2013) Optimized nanoemulsifying systems with enhanced bioavailability of carvedilol. Colloids Surf B 101:465–474

    Article  CAS  Google Scholar 

  • Stott PW, Williams AC, Barry BW (1998) Transdermal delivery from eutectic systems: enhanced permeation of a model drug, ibuprofen. J Control Release 50:297–308

    Article  CAS  PubMed  Google Scholar 

  • Sun CC (2013) Cocrystallization for successful drug delivery. Expert Opin Drug Deliv 10:201–213

    Article  CAS  PubMed  Google Scholar 

  • Tao T, Zhao Y, Wu J et al (2009) Preparation and evaluation of itraconazole dihydrochloride for the solubility and dissolution rate enhancement. Int J Pharm 367:109–114

    Article  CAS  PubMed  Google Scholar 

  • Thadkala K, Nanam PK, Rambabu B et al (2014) Preparation and characterization of amorphous ezetimibe nanosuspensions intended for enhancement of oral bioavailability. Int J Pharm Investig 4:131–137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thakral S, Suryanarayanan R (2015) Salt formation during freeze-drying—an approach to enhance indomethacin dissolution. Pharm Res 32:3722–3731

    Article  CAS  PubMed  Google Scholar 

  • Tiwari AK (2001) Modification of crystal habit and its role in dosage form performance. Drug Dev Ind Pharm 27:699–709

    Article  Google Scholar 

  • Tran TH, Poudel BK, Marasini N et al (2013) Preparation and evaluation of raloxifene-loaded solid dispersion nanoparticle by spray-drying technique without an organic solvent. Int J Pharm 443:50–57

    Article  CAS  PubMed  Google Scholar 

  • Tran TH, Ramasamy T, Troung DH et al (2014a) Preparation and characterization of fenofibrate-loaded nanostructured lipid carriers for oral bioavailability enhancement. AAPS Pharm Sci Tech 15:1509–1515

  • Tran TH, Ramasamy T, Troung DH et al (2014b) Development of vorinostat-loaded solid lipid nanoparticles to enhance pharmacokinetics and efficacy against multidrug-resistant cancer cells. Pharm Res 31:1978–1988

  • Tran TH, Ramasamy T, Cho HJ et al (2014c) Formulation and optimization of raloxifene-loaded solid lipid nanoparticles to enhance oral bioavailability. J Nanosci Nanotechnol 14:4820–4831

  • Truong DH, Tran TH, Ramasamy T et al (2015) Preparation and characterization of solid dispersion using a novel amphiphilic copolymer to enhance dissolution and oral bioavailability of sorafenib. Powder Technol 283:260–265

    Article  CAS  Google Scholar 

  • U.S. Food and Drug Administration (2015) Waiver of in vivo bioavailability and bioequivalence studies for immediate release solid oral dosage forms based on a biopharmaceutics classification system. U.S. Food and Drug Administration, Guidance for Industry, Silver Spring. http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/ucm128219.html. Accessed 21 July 2015

  • Van Eerdenbrugh B, Vermant J, Martens JA et al (2009) A screening study of surface stabilization during the production of drug nanocrystals. J Pharm Sci 98:2091–2103

    Article  PubMed  CAS  Google Scholar 

  • Vasconcelos T, Costa P (2007) Development of a rapid dissolving ibuprofen solid dispersion. Pharm Sci 16: 676–681

    Google Scholar 

  • Verma AK, Sachin K (2008) Novel hydrophilic drug polymer nano-conjugates of cisplatin showing long blood retention profile: its release kinetics, cellular uptake and bio-distribution. Curr Drug Deliv 5:120–126

    Article  CAS  PubMed  Google Scholar 

  • Verma S, Gokhale R, Burgess DJ (2009) A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. Int J Pharm 380:216–222

    Article  CAS  PubMed  Google Scholar 

  • Wang LC, Ding H, Zhao JH et al (2008) Solubility of isonicotinic acid in 4-methylpyridine + water from (287.65 to 361.15) K. J Chem Eng Data 53:2544–2546

    Article  CAS  Google Scholar 

  • Williams HD, Trevaskis NL, Charman SA et al (2013) Strategies to address low drug solubility in discovery and development. Pharmacol Rev 65:315–499

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Ling P, Zhang T (2013) Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv 2013:315–340

    Article  CAS  Google Scholar 

  • Yadav AV, Shete AS, Dabke AP et al (2009) Co-crystals: a novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian J Pharm Sci 71:359–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav SK, Mishra S, Mishra B (2012) Eudragit-based nanosuspension of poorly water-soluble drug: formulation and in vitro-in vivo evaluation. AAPS Pharm Sci Tech 13:1031–1044

    Article  CAS  Google Scholar 

  • Yan YD, Sung JH, Kim KK et al (2012) Novel valsartan-loaded solid dispersion with enhanced bioavailability and no crystalline changes. Int J Pharm 422:202–210

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wang H, Zhang T et al (2014) Exploring the potential of self-assembled mixed micelles in enhancing the stability and oral bioavailability of an acid-labile drug. Eur J Pharm Sci 62:301–308

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Zhang X, Ye Y et al (2015) Nanostructured lipid carriers used for oral delivery of oridonin: an effect of ligand modification on absorption. Int J Pharm 479:391–398

    Article  CAS  PubMed  Google Scholar 

  • Zhu JX, Tang D, Feng L et al (2013) Development of self-microemulsifying drug delivery system for oral bioavailability enhancement of berberine hydrochloride. Drug Dev Ind Pharm 39:499–506

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong Oh Kim or Chul Soon Yong.

Ethics declarations

Conflict of interest

All authors (R.K. Thapa, H.G. Choi, J.O. Kim, C.S. Yong) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thapa, R.K., Choi, HG., Kim, J.O. et al. Analysis and optimization of drug solubility to improve pharmacokinetics. Journal of Pharmaceutical Investigation 47, 95–110 (2017). https://doi.org/10.1007/s40005-016-0299-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-016-0299-z

Keywords

Navigation