Skip to main content
Log in

Polymers in the co-delivery of siRNA and anticancer drugs to treat multidrug-resistant tumors

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Traditional chemotherapeutic agents have long been associated with serious drawbacks due to the heterogeneity and complexity of human cancer. One of the major hurdles regarding chemotherapy is the development of multidrug resistance by the cancer cells. Combination therapy of cancer using different anticancer vectors holds great promise in clinical settings and has been accepted as a current treatment standard for cancer. Recently, siRNA-mediated RNA interference has gained significant attention for cancer treatment due to its ability to knock down genes and proteins with great specificity. Combination of this fast evolving approach to downregulation of genes associated with multidrug resistance in cancer with the simultaneous delivery of traditional chemotherapeutics is fast becoming an effective approach in the cancer therapy. This article provides a view focused on the polymers used to develop multifunctional co-delivery systems that specifically encapsulate siRNAs targeted against MDR and conventional chemotherapeutics. The many studies reviewed here that reported successful in vitro and in vivo results emphasize the promise of this combination therapy approach to overcome multidrug resistance in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abouzeid AH, Patel NR, Sarisozen C, Torchilin VP (2014) Transferrin-targeted polymeric micelles co-loaded with curcumin and paclitaxel: efficient killing of paclitaxel-resistant cancer cells. Pharm Res 31:1938–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akinc A, Thomas M, Klibanov AM, Langer R (2005) Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med 7:657–663

    Article  CAS  PubMed  Google Scholar 

  • Benjaminsen RV, Mattebjerg MA, Henriksen JR, Moghimi SM, Andresen TL (2013) The possible “Proton Sponge” effect of polyethylenimine (PEI) does not include change in lysosomal pH. Mol Ther 21:149–157

    Article  CAS  PubMed  Google Scholar 

  • Biswas S, Deshpande PP, Navarro G, Dodwadkar NS, Torchilin VP (2013) Lipid modified triblock PAMAM-based nanocarriers for siRNA drug co-delivery. Biomaterials 34:1289–1301

    Article  CAS  PubMed  Google Scholar 

  • Bitko V, Musiyenko A, Shulyayeva O, Barik S (2005) Inhibition of respiratory viruses by nasally administered siRNA. Nat Med 11:50–55

    Article  CAS  PubMed  Google Scholar 

  • Bunn PA Jr (2002) Treatment of advanced non-small-cell lung cancer with two-drug combinations. J Clin Oncol 20:3565–3567

    PubMed  Google Scholar 

  • Cao N, Cheng D, Zou S, Ai H, Gao J, Shuai X (2011) The synergistic effect of hierarchical assemblies of siRNA and chemotherapeutic drugs co-delivered into hepatic cancer cells. Biomaterials 32:2222–2232

    Article  CAS  PubMed  Google Scholar 

  • Chen AM, Zhang M, Wei D, Stueber D, Taratula O, Minko T, He H (2009) Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small 5:2673–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng D, Cao N, Chen J, Yu X, Shuai X (2012) Multifunctional nanocarrier mediated co-delivery of doxorubicin and siRNA for synergistic enhancement of glioma apoptosis in rat. Biomaterials 33:1170–1179

    Article  CAS  PubMed  Google Scholar 

  • Clarke R, Leonessa F, Trock B (2005) Multidrug resistance/P-glycoprotein and breast cancer: review and meta-analysis. Semin Oncol 32:S9–S15

    Article  CAS  PubMed  Google Scholar 

  • Cole SP, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almquist KC, Stewart AJ, Kurz EU, Duncan AM, Deeley RG (1992) Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258:1650–1654

    Article  CAS  PubMed  Google Scholar 

  • Creixell M, Peppas NA (2012) Co-delivery of siRNA and therapeutic agents using nanocarriers to overcome cancer resistance. Nano Today 7:367–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeVita VT Jr, Young RC, Canellos GP (1975) Combination versus single agent chemotherapy: a review of the basis for selection of drug treatment of cancer. Cancer 35:98–110

    Article  PubMed  Google Scholar 

  • Di Pietro A, Dayan G, Conseil G, Steinfels E, Krell T, Trompier D, Baubichon-Cortay H, Jault J (1999) P-glycoprotein-mediated resistance to chemotherapy in cancer cells: using recombinant cytosolic domains to establish structure–function relationships. Braz J Med Biol Res Revista brasileira de pesquisas medicas e biologicas Sociedade Brasileira de Biofisica [et al.] 32:925–939

    CAS  Google Scholar 

  • Dominska M, Dykxhoorn DM (2010) Breaking down the barriers: siRNA delivery and endosome escape. J Cell Sci 123:1183–1189

    Article  CAS  PubMed  Google Scholar 

  • Essex S, Navarro G, Sabhachandani P, Chordia A, Trivedi M, Movassaghian S, Torchilin VP (2015) Phospholipid-modified PEI-based nanocarriers for in vivo siRNA therapeutics against multidrug-resistant tumors. Gene Ther 22:257–266

    Article  CAS  PubMed  Google Scholar 

  • Fattal E, Bochot A (2006) Ocular delivery of nucleic acids: antisense oligonucleotides, aptamers and siRNA. Adv Drug Deliv Rev 58:1203–1223

    Article  CAS  PubMed  Google Scholar 

  • Fay F, Scott CJ (2011) Antibody-targeted nanoparticles for cancer therapy. Immunotherapy 3:381–394

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Dagnaes-Hansen F, Nielsen EJ, Wengel J, Besenbacher F, Howard KA, Kjems J (2009) The effect of chemical modification and nanoparticle formulation on stability and biodistribution of siRNA in mice. Mol Therapy J Am Soc Gene Therapy 17:1225–1233

    Article  CAS  Google Scholar 

  • Gillet JP, Gottesman MM (2010) Mechanisms of multidrug resistance in cancer. Methods Mol Biol 596:47–76

    Article  CAS  PubMed  Google Scholar 

  • Goodall S, Jones ML, Mahler S (2015) Monoclonal antibody-targeted polymeric nanoparticles for cancer therapy-future prospects. J Chem Technol Biotechnol 90:1169–1176

    Article  CAS  Google Scholar 

  • Greenberg PL, Lee SJ, Advani R, Tallman MS, Sikic BI, Letendre L, Dugan K, Lum B, Chin DL, Dewald G, Paietta E, Bennett JM, Rowe JM (2004) Mitoxantrone, etoposide, and cytarabine with or without valspodar in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome: a phase III trial (E2995). J Clin Oncol 22:1078–1086

    Article  CAS  PubMed  Google Scholar 

  • Gu FX, Karnik R, Wang AZ, Alexis F, Levy-Nissenbaum E, Hong S, Langer RS, Farokhzad OC (2007) Targeted nanoparticles for cancer therapy. Nano Today 2:14–21

    Article  Google Scholar 

  • Guo P, Coban O, Snead NM, Trebley J, Hoeprich S, Guo S, Shu Y (2010) Engineering RNA for targeted siRNA delivery and medical application. Adv Drug Deliv Rev 62:650–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutteridge WE (1985) Existing chemotherapy and its limitations. Br Med Bull 41:162–168

    CAS  PubMed  Google Scholar 

  • Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 95:4607–4612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue T, Sugimoto M, Sakurai T, Saito R, Futaki N, Hashimoto Y, Honma Y, Arai I, Nakaike S (2007) Modulation of scratching behavior by silencing an endogenous cyclooxygenase-1 gene in the skin through the administration of siRNA. J Gene Med 9:994–1001

    Article  CAS  PubMed  Google Scholar 

  • Johnstone RW, Ruefli AA, Lowe SW (2002) Apoptosis: A link between cancer genetics and chemotherapy. Cell 108:153–164

    Article  CAS  PubMed  Google Scholar 

  • Kleinman ME, Yamada K, Takeda A, Chandrasekaran V, Nozaki M, Baffi JZ, Albuquerque RJ, Yamasaki S, Itaya M, Pan Y, Appukuttan B, Gibbs D, Yang Z, Kariko K, Ambati BK, Wilgus TA, DiPietro LA, Sakurai E, Zhang K, Smith JR, Taylor EW, Ambati J (2008) Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452:591–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko YT, Kale A, Hartner WC, Papahadjopoulos-Sternberg B, Torchilin VP (2009) Self-assembling micelle-like nanoparticles based on phospholipid-polyethyleneimine conjugates for systemic gene delivery. J Control Release 133:132–138

    Article  CAS  PubMed  Google Scholar 

  • Krishna R, Mayer LD (1997) Liposomal doxorubicin circumvents PSC 833-free drug interactions, resulting in effective therapy of multidrug-resistant solid tumors. Cancer Res 57:5246–5253

    CAS  PubMed  Google Scholar 

  • Krishna R, Mayer LD (2000) Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 11:265–283

    Article  CAS  PubMed  Google Scholar 

  • Lage H (2006) MDR1/P-glycoprotein (ABCB1) as target for RNA interference-mediated reversal of multidrug resistance. Curr Drug Targets 7:813–821

    Article  CAS  PubMed  Google Scholar 

  • Lai CY, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, Lin VS (2003) A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 125:4451–4459

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Mok H, Lee Y, Park TG (2011) Self-assembled siRNA-PLGA conjugate micelles for gene silencing. J Control Release Off J Control Release Soc 152:152–158

    Article  CAS  Google Scholar 

  • Li F, Zhao C, Wang L (2014) Molecular-targeted agents combination therapy for cancer: developments and potentials. Int J Cancer 134:1257–1269

    Article  CAS  PubMed  Google Scholar 

  • Lilenbaum RC, Herndon JE 2nd, List MA, Desch C, Watson DM, Miller AA, Graziano SL, Perry MC, Saville W, Chahinian P, Weeks JC, Holland JC, Green MR (2005) Single-agent versus combination chemotherapy in advanced non-small-cell lung cancer: the cancer and leukemia group B (study 9730). J Clin Oncol 23:190–196

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Liong M, Zink JI, Tamanoi F (2007) Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 3:1341–1346

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Liong M, Li Z, Zink JI, Tamanoi F (2010) Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 6:1794–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Zhao Y, Ng KW, Zhao Y (2013) Integrated hollow mesoporous silica nanoparticles for target drug/siRNA co-delivery. Chemistry 19:15593–15603

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Teh C, Zhang Q, Borah P, Choong C, Korzh V, Zhao Y (2014) Redox-responsive mesoporous silica nanoparticles: a physiologically sensitive codelivery vehicle for siRNA and doxorubicin. Antioxid Redox Signal 21:707–722

    Article  CAS  PubMed  Google Scholar 

  • Meng H, Liong M, Xia T, Li Z, Ji Z, Zink JI, Nel AE (2010) Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano 4:4539–4550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng H, Xue M, Xia T, Ji Z, Tarn DY, Zink JI, Nel AE (2011) Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano 5:4131–4144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng H, Mai WX, Zhang H, Xue M, Xia T, Lin S, Wang X, Zhao Y, Ji Z, Zink JI, Nel AE (2013) Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano 7:994–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milroy R (1993) A randomised clinical study of verapamil in addition to combination chemotherapy in small cell lung cancer. West of Scotland Lung Cancer Research Group, and the Aberdeen Oncology Group. Br J Cancer 68:813–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misra R, Das M, Sahoo BS, Sahoo SK (2014) Reversal of multidrug resistance in vitro by co-delivery of MDR1 targeting siRNA and doxorubicin using a novel cationic poly(lactide-co-glycolide) nanoformulation. Int J Pharm 475:372–384

    Article  CAS  PubMed  Google Scholar 

  • Navarro G, Sawant RR, Biswas S, Essex S, Tros de Ilarduya C, Torchilin VP (2012) P-glycoprotein silencing with siRNA delivered by DOPE-modified PEI overcomes doxorubicin resistance in breast cancer cells. Nanomedicine 7:65–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro G, Essex S, Sawant RR, Biswas S, Nagesha D, Sridhar S, de ICT, Torchilin VP (2014) Phospholipid-modified polyethylenimine-based nanopreparations for siRNA-mediated gene silencing: implications for transfection and the role of lipid components. Nanomed Nanotechnol Biol Med 10:411–419

    Article  CAS  Google Scholar 

  • Ngamcherdtrakul W, Morry J, Gu S, Castro DJ, Goodyear SM, Sangvanich T, Reda MM, Lee R, Mihelic SA, Beckman BL, Hu Z, Gray JW, Yantasee W (2015) Cationic polymer modified mesoporous silica nanoparticles for targeted SiRNA delivery to HER2 + breast cancer. Adv Funct Mater 25:2646–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira S, van Rooy I, Kranenburg O, Storm G, Schiffelers RM (2007) Fusogenic peptides enhance endosomal escape improving siRNA-induced silencing of oncogenes. Int J Pharm 331:211–214

    Article  CAS  PubMed  Google Scholar 

  • Orr GA, Verdier-Pinard P, McDaid H, Horwitz SB (2003) Mechanisms of Taxol resistance related to microtubules. Oncogene 22:7280–7295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil Y, Panyam J (2009) Polymeric nanoparticles for siRNA delivery and gene silencing. Int J Pharm 367:195–203

    Article  CAS  PubMed  Google Scholar 

  • Patil YB, Swaminathan SK, Sadhukha T, Ma L, Panyam J (2010) The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance. Biomaterials 31:358–365

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JR, Bruno PM, Gilbert LA, Capron KL, Lauffenburger DA, Hemann MT (2013) Defining principles of combination drug mechanisms of action. Proc Natl Acad Sci USA 110:E170–E179

    Article  CAS  PubMed  Google Scholar 

  • Radu DR, Lai CY, Jeftinija K, Rowe EW, Jeftinija S, Lin VS (2004) A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J Am Chem Soc 126:13216–13217

    Article  CAS  PubMed  Google Scholar 

  • Rehman ZU, Hoekstra D, Zuhorn IS (2013) Mechanism of polyplex- and lipoplex-mediated delivery of nucleic acids: real-time visualization of transient membrane destabilization without endosomal lysis. ACS Nano 7:3767–3777

    Article  Google Scholar 

  • Saad M, Garbuzenko OB, Minko T (2008) Co-delivery of siRNA and an anticancer drug for treatment of multidrug-resistant cancer. Nanomedicine (Lond) 3:761–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salzano G, Riehle R, Navarro G, Perche F, De Rosa G, Torchilin VP (2014) Polymeric micelles containing reversibly phospholipid-modified anti-survivin siRNA: a promising strategy to overcome drug resistance in cancer. Cancer Lett 343:224–231

    Article  CAS  PubMed  Google Scholar 

  • Salzano G, Navarro G, Trivedi MS, De Rosa G, Torchilin VP (2015) Multifunctional polymeric micelles co-loaded with anti-survivin siRNA and paclitaxel overcome drug resistance in an animal model of ovarian cancer. Mol Cancer Ther 14:1075–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarisozen C, Dhokai S, Tsikudo EG, Luther E, Rachman IM, Torchilin VP (2016a) Nanomedicine based curcumin and doxorubicin combination treatment of glioblastoma with scFv-targeted micelles: in vitro evaluation on 2D and 3D tumor models. Eur J Pharm Biopharm 108:54–67

    Article  CAS  PubMed  Google Scholar 

  • Sarisozen C, Salzano G, Torchilin VP (2016b) Lipid-based siRNA delivery systems: challenges, promises and solutions along the long journey. Curr Pharm Biotechnol 17:728–740

    Article  CAS  PubMed  Google Scholar 

  • Schinkel AH, Mayer U, Wagenaar E, Mol CA, van Deemter L, Smit JJ, van der Valk MA, Voordouw AC, Spits H, van Tellingen O, Zijlmans JM, Fibbe WE, Borst P (1997) Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc Natl Acad Sci USA 94:4028–4033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shargh VH, Hondermarck H, Liang M (2016) Antibody-targeted biodegradable nanoparticles for cancer therapy. Nanomedicine (Lond) 11:63–79

    Article  CAS  Google Scholar 

  • Slowing II, Vivero-Escoto JL, Wu CW, Lin VS (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60:1278–1288

    Article  CAS  PubMed  Google Scholar 

  • American Cancer Society (2015) Global cancer facts and figures, 3rd edn., Atlanta, American Cancer Society

  • American Cancer Society (2016) Cancer facts and figures 2016, Atlanta, American Cancer Society

  • Sonneveld P, Suciu S, Weijermans P, Beksac M, Neuwirtova R, Solbu G, Lokhorst H, van der Lelie J, Dohner H, Gerhartz H, Segeren CM, Willemze R, Lowenberg B, European Organization for R, Treatment of C, Leukaemia Cooperative G, Dutch Haemato-Oncology Cooperative Study G (2001) Cyclosporin A combined with vincristine, doxorubicin and dexamethasone (VAD) compared with VAD alone in patients with advanced refractory multiple myeloma: an EORTC-HOVON randomized phase III study (06914). Br J Haematol 115:895–902

    Article  CAS  PubMed  Google Scholar 

  • Su WP, Cheng FY, Shieh DB, Yeh CS, Su WC (2012) PLGA nanoparticles codeliver paclitaxel and Stat3 siRNA to overcome cellular resistance in lung cancer cells. Int J Nanomed 7:4269–4283

    Article  CAS  Google Scholar 

  • Sun X, Pang Z, Ye H, Qiu B, Guo L, Li J, Ren J, Qian Y, Zhang Q, Chen J, Jiang X (2012) Co-delivery of pEGFP-hTRAIL and paclitaxel to brain glioma mediated by an angiopep-conjugated liposome. Biomaterials 33:916–924

    CAS  PubMed  Google Scholar 

  • Suo A, Qian J, Zhang Y, Liu R, Xu W, Wang H (2016) Comb-like amphiphilic polypeptide-based copolymer nanomicelles for co-delivery of doxorubicin and P-gp siRNA into MCF-7 cells. Mater Sci Eng C Mater Biol Appl 62:564–573

    Article  CAS  PubMed  Google Scholar 

  • Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5:219–234

    Article  CAS  PubMed  Google Scholar 

  • Tannock IF, Lee CM, Tunggal JK, Cowan DS, Egorin MJ (2002) Limited penetration of anticancer drugs through tumor tissue: a potential cause of resistance of solid tumors to chemotherapy. Clin Cancer Res 8:878–884

    CAS  PubMed  Google Scholar 

  • Torchilin V (2011) Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63:131–135

    Article  CAS  PubMed  Google Scholar 

  • Torchilin VP (2014) Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 13:813–827

    Article  CAS  Google Scholar 

  • Torchilin VP, Trubetskoy VS (1995) Which polymers can make nanoparticulate drug carriers long-circulating. Adv Drug Deliv Rev 16:141–155

    Article  CAS  Google Scholar 

  • Torney F, Trewyn BG, Lin VS, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  CAS  PubMed  Google Scholar 

  • Ueda K, Cardarelli C, Gottesman MM, Pastan I (1987) Expression of a full-length cDNA for the human “MDR1” gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc Natl Acad Sci USA 84:3004–3008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallet-Regi M, Ramila A, del Real RP, Perez-Pariente J (2001) A new property of MCM-41: drug delivery system. Chem Mater 13:308–311

    Article  CAS  Google Scholar 

  • van Asbeck AH, Beyerle A, McNeill H, Bovee-Geurts PHM, Lindberg S, Verdurmen WPR, Hallbrink M, Lange U, Heidenreich O, Brock R (2013) Molecular parameters of siRNA-cell penetrating peptide nanocomplexes for efficient cellular delivery. ACS Nano 7:3797–3807

    Article  PubMed  Google Scholar 

  • Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S, Zink JI, Nel AE (2009) Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 3:3273–3286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao ZY, Levy-Nissenbaum E, Alexis F, Luptak A, Teply BA, Chan JM, Shi JJ, Digga E, Cheng J, Langer R, Farokhzad OC (2012) Engineering of targeted nanoparticles for cancer therapy using internalizing aptamers isolated by cell-uptake selection. ACS Nano 6:696–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin JAL, Wheatley K, Rees JKH, Burnett AK, Working UMAL (2001) Comparison of ‘sequential’ versus ‘standard’ chemotherapy as re-induction treatment, with or without cyclosporine, in refractory/relapsed acute myeloid leukaemia (AML): results of the UK Medical Research Council AML-R trial. Br J Haematol 113:713–726

    Article  CAS  Google Scholar 

  • Yu YH, Kim E, Park DE, Shim G, Lee S, Kim YB, Kim CW, Oh YK (2012) Cationic solid lipid nanoparticles for co-delivery of paclitaxel and siRNA. Eur J Pharm Biopharm 80:268–273

    Article  CAS  PubMed  Google Scholar 

  • Zhang CG, Zhu WJ, Liu Y, Yuan ZQ, Yang SD, Chen WL, Li JZ, Zhou XF, Liu C, Zhang XN (2016) Novel polymer micelle mediated co-delivery of doxorubicin and P-glycoprotein siRNA for reversal of multidrug resistance and synergistic tumor therapy. Sci Rep 6:23859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu L, Perche F, Wang T, Torchilin VP (2014) Matrix metalloproteinase 2-sensitive multifunctional polymeric micelles for tumor-specific co-delivery of siRNA and hydrophobic drugs. Biomaterials 35:4213–4222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuckerman JE, Davis ME (2015) Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nature reviews. Drug Discov 14:843–856

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Torchilin.

Ethics declarations

Conflict of interest

All authors (C. Sarisozen, J. Pan, I. Dutta, and V. P. Torchilin) declare that they have no conflict of interest.

Additional information

C. Sarisozen and J. Pan contributed equally to this work.

This manuscript has been submitted to Journal of Pharmaceutical Investigation, for the special issue of “Polymer based drug delivery systems”. We confirm that manuscript has not been published and is not under consideration for publication elsewhere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarisozen, C., Pan, J., Dutta, I. et al. Polymers in the co-delivery of siRNA and anticancer drugs to treat multidrug-resistant tumors. Journal of Pharmaceutical Investigation 47, 37–49 (2017). https://doi.org/10.1007/s40005-016-0296-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-016-0296-2

Keywords

Navigation