Skip to main content

Advertisement

Log in

Cell penetrating peptides as an innovative approach for drug delivery; then, present and the future

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

With the rapid development of biotechnology, various macromolecules as therapeutic agents have made drug delivery an important field of research. However, these are being commercialized as injection form. Due to low patient compliance, various non-invasive routes emerge as a promising strategy. Cell penetrating peptides (CPPs) have shown to assist in efficient and non-toxic manner. They provide ample evidence to deliver of many cargoes ranging from small molecules to proteins and even nanocarriers for various applications. This review briefly discusses about introduction of CPPs, history, cellular uptake mechanisms and various possible alternative routes for CPP-conjugated drug delivery system. It also aims to give a perspective on present status of CPP-mediated research, clinical development, possible obstacles as well as future opportunities. Thus, development of novel CPPs that are safe, tissue-specific and highly efficient will be exemplified and become ideal vehicles for therapeutic delivery in near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abes R, Moulton HM, Clair P, Yang ST, Abes S, Melikov K, Prevot P, Youngblood DS, Iversen PL, Chernomordik LV (2008) Delivery of steric block morpholino oligomers by (RXR) 4 peptides: structure–activity studies. Nucleic Acids Res 36:6343–6354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae H, Lee K (2013) On employing a translationally controlled tumor protein-derived protein transduction domain analog for transmucosal delivery of drugs. J Controlled Release 170:358–364

    Article  CAS  Google Scholar 

  • Baoum A, Ovcharenko D, Berkland C (2012) Calcium condensed cell penetrating peptide complexes offer highly efficient, low toxicity gene silencing. Int J Pharm 427:134–142

    Article  CAS  PubMed  Google Scholar 

  • Bashyal S, Lee S (2015) Delivery of biopharmaceuticals using combination of liposome and iontophoresis: a review. J Pharm Investig 45:611–624

    Article  CAS  Google Scholar 

  • Bleifuss E, Kammertoens T, Hutloff A, Quarcoo D, Dorner M, Straub P, Uckert W, Hildt E (2006) The translocation motif of hepatitis B virus improves protein vaccination. Cell Mol Life Sci 63:627–635

    Article  CAS  PubMed  Google Scholar 

  • Cohen-Avrahami M, Aserin A, Garti N (2010) H II mesophase and peptide cell-penetrating enhancers for improved transdermal delivery of sodium diclofenac. Colloids Surf, B 77:131–138

    Article  CAS  Google Scholar 

  • Cohen-Avrahami M, Libster D, Aserin A, Garti N (2012) Penetratin-induced transdermal delivery from H II mesophases of sodium diclofenac. J Controlled Release 159:419–428

    Article  CAS  Google Scholar 

  • Derossi D, Joliot AH, Chassaing G, Prochiantz A (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269:10444–10450

    CAS  PubMed  Google Scholar 

  • Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A (1996) Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem 271:18188–18193

    Article  CAS  PubMed  Google Scholar 

  • Deshayes S, Plenat T, Aldrian-Herrada G, Divita G, Le Grimellec C, Heitz F (2004) Primary amphipathic cell-penetrating peptides: structural requirements and interactions with model membranes. Biochemistry 43:7698–7706

    Article  CAS  PubMed  Google Scholar 

  • Deshayes S, Morris M, Divita G, Heitz F (2005) Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cell Mol Life Sci CMLS 62:1839–1849

    Article  CAS  PubMed  Google Scholar 

  • Duan X, Mao S (2010) New strategies to improve the intranasal absorption of insulin. Drug Discov Today 15:416–427

    Article  CAS  PubMed  Google Scholar 

  • Duchardt F, Fotin-Mleczek M, Schwarz H, Fischer R, Brock R (2007) A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic 8:848–866

    Article  CAS  PubMed  Google Scholar 

  • El-Andaloussi S, Holm T, Langel U (2005) Cell-penetrating peptides: mechanisms and applications. Curr Pharm Des 11:3597–3611

    Article  CAS  PubMed  Google Scholar 

  • El-Andaloussi S, Johansson HJ, Holm T, Langel U (2007) A novel cell-penetrating peptide, M918, for efficient delivery of proteins and peptide nucleic acids. Mol Ther 15:1820–1826

    Article  CAS  PubMed  Google Scholar 

  • Elliott GO, Hare P (1997) Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88:223–233

    Article  CAS  PubMed  Google Scholar 

  • Elmquist A, Lindgren M, Bartfai T, Langel U (2001) VE-cadherin-derived cell-penetrating peptide, pVEC, with carrier functions. Exp Cell Res 269:237–244

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed A, Futaki S, Harashima H (2009) Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment. AAPS J 11:13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eum WS, Jang SH, Kim DW, Choi HS, Choi SH, Kim SY, An JJ, Lee SH, Han K, Kang JH (2005) Enhanced transduction of Cu, Zn-superoxide dismutase with HIV-1 Tat protein transduction domains at both termini. Mol Cells 19:191–197

    CAS  PubMed  Google Scholar 

  • Foerg C, Merkle HP (2008) On the biomedical promise of cell penetrating peptides: limits versus prospects. J Pharm Sci 97:144–162

    Article  CAS  PubMed  Google Scholar 

  • Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55:1189–1193

    Article  CAS  PubMed  Google Scholar 

  • Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y (2001) Arginine-rich peptides An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276:5836–5840

    Article  CAS  PubMed  Google Scholar 

  • Gazit E, Lee WJ, Brey PT, Shai Y (1994) Mode of action of the antibacterial cecropin B2: a spectrofluorometric study. Biochemistry 33:10681–10692

    Article  CAS  PubMed  Google Scholar 

  • Goldberg M, Gomez-Orellana I (2003) Challenges for the oral delivery of macromolecules. Nat Rev Drug Discovery 2:289–295

    Article  CAS  PubMed  Google Scholar 

  • Green M, Loewenstein PM (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55:1179–1188

    Article  CAS  PubMed  Google Scholar 

  • Hoogstraate JA, Wertz PW (1998) Drug delivery via the buccal mucosa. Pharm Sci Technol Today 1:309–316

    Article  CAS  Google Scholar 

  • Hou YW, Chan MH, Hsu HR, Liu BR, Chen CP, Chen HH, Lee HJ (2007) Transdermal delivery of proteins mediated by non-covalently associated arginine-rich intracellular delivery peptides. Exp Dermatol 16:999–1006

    Article  CAS  PubMed  Google Scholar 

  • Jarver P, Langel U (2006) Cell-penetrating peptides-a brief introduction. Biochim Biophys Acta (BBA)-Biomembranes 1758:260–263

    Article  CAS  Google Scholar 

  • Jeong EJ, Choi M, Lee J, Rhim T, Lee KY (2015) The spacer arm length in cell-penetrating peptides influences chitosan/siRNA nanoparticle delivery for pulmonary inflammation treatment. Nanoscale 7:20095–20104

    Article  CAS  PubMed  Google Scholar 

  • Jin LH, Bahn JH, Eum WS, Kwon HY, Jang SH, Han KH, Kang TC, Won MH, Kang JH, Cho SW (2001) Transduction of human catalase mediated by an HIV-1 TAT protein basic domain and arginine-rich peptides into mammalian cells. Free Radic Biol Med 31:1509–1519

    Article  CAS  PubMed  Google Scholar 

  • Johansson HJ, El-Andaloussi S, Holm T, Mae M, Janes J, Maimets T, Langel U (2008) Characterization of a novel cytotoxic cell & hyphen; penetrating peptide derived from p14ARF protein. Mol Ther 16:115–123

    Article  CAS  PubMed  Google Scholar 

  • Joliot A, Pernelle C, Deagostini-Bazin H, Prochiantz A (1991) Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci 88:1864–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones AT, Sayers EJ (2012) Cell entry of cell penetrating peptides: tales of tails wagging dogs. J Controlled Release 161:582–591

    Article  CAS  Google Scholar 

  • Juliano R, Alam MR, Dixit V, Kang H (2008) Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides. Nucleic Acids Res 36:4158–4171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kale AA, Torchilin VP (2007a) Enhanced transfection of tumor cells in vivo using “Smart” pH-sensitive TAT-modified pegylated liposomes. J Drug Target 15:538–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kale AA, Torchilin VP (2007b) “Smart” drug carriers: PEGylated TATp-modified pH-sensitive liposomes. J Liposome Res 17:197–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamei N, Takeda-Morishita M (2015) Brain delivery of insulin boosted by intranasal coadministration with cell-penetrating peptides. J Controlled Release 197:105–110

    Article  CAS  Google Scholar 

  • Kamei N, Morishita M, Eda Y, Ida N, Nishio R, Takayama K (2008) Usefulness of cell-penetrating peptides to improve intestinal insulin absorption. J Controlled Release 132:21–25

    Article  CAS  Google Scholar 

  • Kamei N, Nielsen EJB, Khafagy ES, Takeda-Morishita M (2013) Noninvasive insulin delivery: the great potential of cell-penetrating peptides. Ther Deliv 4:315–326

    Article  CAS  PubMed  Google Scholar 

  • Kang MH, Park MJ, Yoo HJ, Lee SG, Kim SR, Yeom DW, Kang MJ, Choi YW (2014) RIPL peptide (IPLVVPLRRRRRRRRC)-conjugated liposomes for enhanced intracellular drug delivery to hepsin-expressing cancer cells. Eur J Pharm Biopharm 87:489–499

    Article  CAS  PubMed  Google Scholar 

  • Kang MH, Yoo HJ, Kwon YH, Yoon HY, Lee SG, Kim SR, Yeom DW, Kang MJ, Choi YW (2015) Design of multifunctional liposomal nanocarriers for folate receptor-specific intracellular drug delivery. Mol Pharm 12:4200–4213

    Article  CAS  PubMed  Google Scholar 

  • Kersemans V, Kersemans K, Cornelissen B (2008) Cell penetrating peptides for in vivo molecular imaging applications. Curr Pharm Des 14:2415–2427

    Article  CAS  PubMed  Google Scholar 

  • Khafagy ES, Morishita M, Onuki Y, Takayama K (2007) Current challenges in non-invasive insulin delivery systems: a comparative review. Adv Drug Deliv Rev 59:1521–1546

    Article  CAS  Google Scholar 

  • Khafagy ES, Morishita M, Isowa K, Imai J, Takayama K (2009) Effect of cell-penetrating peptides on the nasal absorption of insulin. J Controlled Release 133:103–108

    Article  CAS  Google Scholar 

  • Khafagy ES, Morishita M, Ida N, Nishio R, Isowa K, Takayama K (2010) Structural requirements of penetratin absorption enhancement efficiency for insulin delivery. J Controlled Release 143:302–310

    Article  CAS  Google Scholar 

  • Khafagy ES, Kamei N, Nielsen EJB, Nishio R, Takeda-Morishita M (2013) One-month subchronic toxicity study of cell-penetrating peptides for insulin nasal delivery in rats. Eur J Pharm Biopharm 85:736–743

    Article  CAS  Google Scholar 

  • Kim DW, Eum WS, Jang SH, Yoon CS, Choi HS, Choi SH, Kim YH, Kim SY, Lee ES, Nl Baek (2003) Ginsenosides enhance the transduction of tat-superoxide dismutase into mammalian cells and skin. Mol Cells 16:402–406

    CAS  PubMed  Google Scholar 

  • Koren E, Torchilin VP (2012) Cell-penetrating peptides: breaking through to the other side. Trends Mol Med 18:385–393

    Article  CAS  PubMed  Google Scholar 

  • Kristensen M, Franzyk H, Klausen MT, Iversen A, Bahnsen JS, Skyggebjerg RB, Fodera V, Nielsen HM (2015) Penetratin-mediated transepithelial insulin permeation: importance of cationic residues and pH for complexation and permeation. AAPS J 17:1200–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Zakrewsky M, Chen M, Menegatti S, Muraski JA, Mitragotri S (2015) Peptides as skin penetration enhancers: mechanisms of action. J Controlled Release 199:168–178

    Article  CAS  Google Scholar 

  • Kwon SS, Kim SY, Kong BJ, Kim KJ, Noh GY, Im NR, Lim JW, Ha JH, Kim J, Park SN (2015) Cell penetrating peptide conjugated liposomes as transdermal delivery system of Polygonumaviculare L. extract. Int J Pharm 483:26–37

    Article  CAS  PubMed  Google Scholar 

  • Langel U (2015) Cell-penetrating peptides: methods and protocols. Humana Press, New York

    Book  Google Scholar 

  • Lehto T, Kurrikoff K, Langel U (2012) Cell-penetrating peptides for the delivery of nucleic acids. Expert Opin Drug Deliv 9:823–836

    Article  CAS  PubMed  Google Scholar 

  • Lim JM, Chang MY, Park SG, Kang NG, Song YS, Lee YH, Yoo YC, Cho WG, Choi SY, Kang SH (2003) Penetration enhancement in mouse skin and lipolysis in adipocytes by TAT-GKH, a new cosmetic ingredient. J Cosmet Sci 54:483–492

    CAS  PubMed  Google Scholar 

  • Lindgren M, Hallbrink M, Prochiantz A, Langel U (2000) Cell-penetrating peptides. Trends Pharmacol Sci 21:99–103

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zhang W, Wei G, Lu W (2012) Poly (arginine) 8 enhanced intestinal absorption of insulin-loaded nanoparticles. Acta Pharm Sin 47:512–516

    CAS  Google Scholar 

  • Liu X, Liu C, Zhang W, Xie C, Wei G, Lu W (2013) Oligoarginine-modified biodegradable nanoparticles improve the intestinal absorption of insulin. Int J Pharm 448:159–167

    Article  CAS  PubMed  Google Scholar 

  • Lopes LB, Brophy CM, Furnish E, Flynn CR, Sparks O, Komalavilas P, Joshi L, Panitch A, Bentley MVL (2005) Comparative study of the skin penetration of protein transduction domains and a conjugated peptide. Pharm Res 22:750–757

    Article  CAS  PubMed  Google Scholar 

  • Lopes LB, Furnish E, Komalavilas P, Seal BL, Panitch A, Bentley MVL, Brophy CM (2008) Enhanced skin penetration of P20 phosphopeptide using protein transduction domains. Eur J Pharm Biopharm 68:441–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma DX, Shi NQ, Qi XR (2011) Distinct transduction modes of arginine-rich cell-penetrating peptides for cargo delivery into tumor cells. Int J Pharm 419:200–208

    Article  CAS  PubMed  Google Scholar 

  • Madani F, Lindberg S, Langel U, Futaki S, Graslund A (2011) Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys 2011:1–10

    Article  CAS  Google Scholar 

  • Mae M, Langel U (2006) Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery. Curr Opin Pharmacol 6:509–514

    Article  PubMed  CAS  Google Scholar 

  • Magzoub M, Sandgren S, Lundberg P, Oglęcka K, Lilja J, Wittrup A, Eriksson LG, Langel U, Belting M, Graslund A (2006) N-terminal peptides from unprocessed prion proteins enter cells by macropinocytosis. Biochem Biophys Res Commun 348:379–385

    Article  CAS  PubMed  Google Scholar 

  • Maiolo JR, Ferrer M, Ottinger EA (2005) Effects of cargo molecules on the cellular uptake of arginine-rich cell-penetrating peptides. Biochim Biophys Acta (BBA)-Biomembranes 1712:161–172

    Article  CAS  Google Scholar 

  • Manosroi J, Lohcharoenkal W, Gotz F, Werner RG, Manosroi W, Manosroi A (2013a) Transdermal absorption and stability enhancement of salmon calcitonin by Tat peptide. Drug Dev Ind Pharm 39:520–525

    Article  CAS  PubMed  Google Scholar 

  • Manosroi J, Tangjai T, Werner R, Gotz F, Manosroi W, Manosroi A (2013b) Potent and prolonged hypoglycemic activity of an oral insulin–Tat mixture in diabetic mice. Drug Res 63:351–356

    Article  CAS  Google Scholar 

  • Milletti F (2012) Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today 17:850–860

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S, Burke PA, Langer R (2014) Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov 13:655–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales JO, McConville JT (2014) Novel strategies for the buccal delivery of macromolecules. Drug Dev Ind Pharm 40:579–590

    Article  CAS  PubMed  Google Scholar 

  • Morishita M, Kamei N, Ehara J, Isowa K, Takayama K (2007) A novel approach using functional peptides for efficient intestinal absorption of insulin. J Controlled Release 118:177–184

    Article  CAS  Google Scholar 

  • Moulton HM, Nelson MH, Hatlevig SA, Reddy MT, Iversen PL (2004) Cellular uptake of antisense morpholino oligomers conjugated to arginine-rich peptides. Bioconjugate Chem 15:290–299

    Article  CAS  Google Scholar 

  • Munyendo WL, Lv H, Benza-Ingoula H, Baraza LD, Zhou J (2012) Cell penetrating peptides in the delivery of biopharmaceuticals. Biomolecules 2:187–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakase I, Hirose H, Tanaka G, Tadokoro A, Kobayashi S, Takeuchi T, Futaki S (2009) Cell-surface accumulation of flock house virus-derived peptide leads to efficient internalization via macropinocytosis. Mol Ther 17:1868–1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nan YH, Park IS, Hahm KS, Shin SY (2011) Antimicrobial activity, bactericidal mechanism and LPS-neutralizing activity of the cell-penetrating peptide pVEC and its analogs. J Pept Sci 17:812–817

    Article  CAS  PubMed  Google Scholar 

  • Nielsen EJB, Yoshida S, Kamei N, Iwamae R, Khafagy ES, Olsen J, Rahbek UL, Pedersen BL, Takayama K, Takeda-Morishita M (2014) In vivo proof of concept of oral insulin delivery based on a co-administration strategy with the cell-penetrating peptide penetratin. J Controlled Release 189:19–24

    Article  CAS  Google Scholar 

  • Oehlke J, Scheller A, Wiesner B, Krause E, Beyermann M, Klauschenz E, Melzig M, Bienert M (1998) Cellular uptake of an α-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim Biophys Acta (BBA)-Biomembranes 1414:127–139

    Article  CAS  Google Scholar 

  • Padari K, Koppel K, Lorents A, Hallbrink M, Mano M, Pedroso de Lima MC, Pooga M (2010) S413-PV cell-penetrating peptide forms nanoparticle-like structures to gain entry into cells. Bioconjugate Chem 21:774–783

    Article  CAS  Google Scholar 

  • Park J, Ryu J, Jin LH, Bahn JH, Kim JA, Yoon CS, Kim DW, Han KH, Eum WS, Kwon HY (2002) 9-polylysine protein transduction domain: enhanced penetration efficiency of superoxide dismutase into mammalian cells and skin. Mol Cells 13:202–208

    PubMed  Google Scholar 

  • Patel LN, Wang J, Kim KJ, Borok Z, Crandall ED, Shen WC (2009) Conjugation with cationic cell-penetrating peptide increases pulmonary absorption of insulin. Mol Pharm 6:492–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel VF, Liu F, Brown MB (2011) Advances in oral transmucosal drug delivery. J Controlled Release 153:106–116

    Article  CAS  Google Scholar 

  • Pooga M, Hallbrink M, Zorko M (1998) Cell penetration by transportan. FASEB J 12:67–77

    CAS  PubMed  Google Scholar 

  • Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y (1992) Interaction of antimicrobial dermaseptin and its fluorescently labeled analogs with phospholipid membranes. Biochemistry 31:12416–12423

    Article  CAS  PubMed  Google Scholar 

  • Reissmann S (2014) Cell penetration: scope and limitations by the application of cell-penetrating peptides. J Pept Sci 20:760–784

    Article  CAS  PubMed  Google Scholar 

  • Rennert R, Neundorf I, Jahnke HG, Suchowerskyj P, Dournaud P, Robitzki A, Beck-Sickinger AG (2008) Generation of carrier peptides for the delivery of nucleic acid drugs in primary cells. ChemMedChem 3:241–253

    Article  CAS  PubMed  Google Scholar 

  • Rothbard JB, Garlington S, Lin Q, Kirschberg T, Kreider E, McGrane PL, Wender PA, Khavari PA (2000) Conjugation of arginine oligomers to cyclosporin a facilitates topical delivery and inhibition of inflammation. Nat Med 6:1253–1257

    Article  CAS  PubMed  Google Scholar 

  • Ruczynski J, Wierzbicki PM, Kogut-Wierzbicka M, Mucha P, Siedlecka-Kroplewska K, Rekowski P (2014) Cell-penetrating peptides as a promising tool for delivery of various molecules into the cells. Folia Histochem Cytobiol 52:257–269

    Article  PubMed  Google Scholar 

  • Sakuma S, Suita M, Masaoka Y, Kataoka M, Nakajima N, Shinkai N, Yamauchi H, Hiwatari K, Tachikawa H, Kimura R (2010) Oligoarginine-linked polymers as a new class of penetration enhancers. J Controlled Release 148:187–196

    Article  CAS  Google Scholar 

  • Sattar M, Sayed OM, Lane ME (2014) Oral transmucosal drug delivery–current status and future prospects. Int J Pharm 471:498–506

    Article  CAS  PubMed  Google Scholar 

  • Shan W, Zhu X, Liu M, Li L, Zhong J, Sun W, Zhang Z, Huang Y (2015) Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin. ACS Nano 9:2345–2356

    Article  CAS  PubMed  Google Scholar 

  • Shi NQ, Qi XR, Xiang B, Zhang Y (2014) A survey on “Trojan Horse” peptides: opportunities, issues and controlled entry to “Troy”. J Controlled Release 194:53–70

    Article  CAS  Google Scholar 

  • Song J, Kai M, Zhang W, Zhang J, Liu L, Zhang B, Liu X, Wang R (2011) Cellular uptake of transportan 10 and its analogs in live cells: selectivity and structure–activity relationship studies. Peptides 32:1934–1941

    Article  CAS  PubMed  Google Scholar 

  • Steinbach JM, Seo YE, Saltzman WM (2016) Cell penetrating peptide-modified poly (lactic-co-glycolic acid) nanoparticles with enhanced cell internalization. Acta Biomater 30:49–61

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Mani R, Hong M (2008) Asymmetric insertion of membrane proteins in lipid bilayers by solid-state NMR paramagnetic relaxation enhancement: a cell-penetrating peptide example. J Am Chem Soc 130:8856–8864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vives E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017

    Article  CAS  PubMed  Google Scholar 

  • Xia H, Gao X, Gu G, Liu Z, Zeng N, Hu Q, Song Q, Yao L, PangZ Jiang X (2011) Low molecular weight protamine-functionalized nanoparticles for drug delivery to the brain after intranasal administration. Biomaterials 32:9888–9898

    Article  CAS  PubMed  Google Scholar 

  • Xia H, Gao X, Gu G, Liu Z, Hu Q, Tu Y, Song Q, Yao L, Pang Z, Jiang X (2012) Penetratin-functionalized PEG–PLA nanoparticles for brain drug delivery. Int J Pharm 436:840–850

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Wang H, Jiang Y, Liu J, Wang Z, Yang Y, Huang S, Huang Y (2013) Cell-penetrating peptide-modified PLGA nanoparticles for enhanced nose-to-brain macromolecular delivery. Macromol Res 21:435–441

    Article  CAS  Google Scholar 

  • Zatsepin T, Turner J, Oretskaya T, Gait M (2005) Conjugates of oligonucleotides and analogues with cell penetrating peptides as gene silencing agents. Curr Pharm Des 11:3639–3654

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Torgerson TR, Liu XY, Timmons S, Colosia AD, Hawiger J, Tam JP (1998) Preparation of functionally active cell-permeable peptides by single-step ligation of two peptide modules. Proc Natl Acad Sci 95:9184–9189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Lv H, Zhou J (2009) Novel solid lipid nanoparticles as carriers for oral administration of insulin. Die Pharmazie-An Int J Pharm Sci 64:574–578

    CAS  Google Scholar 

  • Zhang L, Song L, Zhang C, Ren Y (2012a) Improving intestinal insulin absorption efficiency through coadministration of cell-penetrating peptide and hydroxypropyl-β-cyclodextrin. Carbohydr Polym 87:1822–1827

    Article  CAS  Google Scholar 

  • Zhang Z-H, Zhang Y-L, Zhou J-P, Lv H-X (2012b) Solid lipid nanoparticles modified with stearic acid–octaarginine for oral administration of insulin. Int J Nanomed 7:3333

    CAS  Google Scholar 

  • Zhu S, Chen S, Gao Y, Guo F, Li F, Xie B, Zhou J, Zhong H (2015) Enhanced oral bioavailability of insulin using PLGA nanoparticles co-modified with cell-penetrating peptides and Engrailed secretion peptide (Sec). Drug Deliv 16:1–12

    Article  CAS  Google Scholar 

  • Zorko M, Langel U (2005) Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev 57:529–545

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

All authors declare (S. Bashyal, G. Noh, T. Keum, Y.W. Choi and S. Lee) that they have no conflict of interest. This article does not contain any studies with human and animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangkil Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashyal, S., Noh, G., Keum, T. et al. Cell penetrating peptides as an innovative approach for drug delivery; then, present and the future. Journal of Pharmaceutical Investigation 46, 205–220 (2016). https://doi.org/10.1007/s40005-016-0253-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-016-0253-0

Keywords

Navigation