Skip to main content

Advertisement

Log in

Nanoparticle-based combination drug delivery systems for synergistic cancer treatment

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Despite being a leading cause of death worldwide, cancer remains difficult to treat due to the development of drug resistance and severe adverse effects associated with conventional chemotherapy. Hence, combination chemotherapy is theoretically advantageous owing to the synergistic effects of drugs and suppression of drug resistance. Nanoparticle-mediated chemotherapeutic delivery is a promising approach for the effective treatment of various cancers because it may simultaneously enhance therapeutic effects and reduce side effects. The loading of multiple chemotherapeutic agents to these systems could additionally improve the antineoplastic efficacy. This review highlights recent advances in combination chemotherapy using small-molecule chemotherapeutic agents via nanocarrier systems, e.g., liposomes, polymeric micelles, dendrimers, polymer-drug conjugates, and mesoporous silica nanoparticles. Specifically, it emphasizes the unique properties of these systems that make them amenable to optimized treatments with respect to efficacy and safety and clarifies areas in which current therapeutic strategies can be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agrawal V, Paul MK, Mukhopadhyay AK (2005) 6-mercaptopurine and daunorubicin double drug liposomes-preparation, drug-drug interaction and characterization. J Liposome Res 15(3–4):141–155

    Article  CAS  PubMed  Google Scholar 

  • Al-Jamal WT, Kostarelos K (2011) Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res 44(10):1094–1104

    Article  CAS  PubMed  Google Scholar 

  • Arcos D, López-Noriega A, Ruiz-Hernández E, Terasaki O, Vallet-Regi M (2009) Ordered mesoporous microspheres for bone grafting and gene delivery. Chem Mater 21(6):1000–1009

    Article  CAS  Google Scholar 

  • Armstrong AJ, Carducci MA (2006) New drugs in prostate cancer. Curr Opin Urol 16(3):138–145

    Article  PubMed  Google Scholar 

  • Bae Y, Diezi TA, Zhao A, Kwon GS (2007) Mixed polymeric micelles for combination cancer chemotherapy through the concurrent delivery of multiple chemotherapeutic agents. J Control Release 122:324–330

    Article  CAS  PubMed  Google Scholar 

  • Bae Y, Alani AW, Rockich NC, Lai TS, Kwon GS (2010) Mixed pH-sensitive polymeric micelles for combination drug delivery. Pharm Res 27(11):2421–2432

    Article  CAS  PubMed  Google Scholar 

  • Baeza A, Colilla M, Vallet-Regi M (2015) Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert Opin Drug Deliv 12(2):319–337

    Article  CAS  PubMed  Google Scholar 

  • Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13(1):238–252

    Article  CAS  PubMed  Google Scholar 

  • Batist G, Gelmon KA, Chi KN, Miller WH Jr, Chia SK, Mayer LD, Swenson CE, Janoff AS, Louie AC (2009) Safety, pharmacokinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors. Clin Cancer Res 15(2):692–700

    Article  CAS  PubMed  Google Scholar 

  • Beer TM, Ryan C, Alumkal J, Ryan CW, Sun J, Eilers KM (2010) A phase II study of paclitaxel poliglumex in combination with transdermal estradiol for the treatment of metastatic castration-resistant prostate cancer after docetaxel chemotherapy. Anticancer Drugs 21(4):433–438

    Article  CAS  PubMed  Google Scholar 

  • Bell A (2005) Antimalarial drug synergism and antagonism: mechanistic and clinical significance. FEMS Microbiol Lett 253(2):171–184

    Article  CAS  PubMed  Google Scholar 

  • Boissiere C, Grosso D, Chaumonnot A, Nicole Sanchez C (2011) Aerosol route to functional nanostructured inorganic and hybrid porous materials. Adv Mater 23(5):599–623

    Article  CAS  PubMed  Google Scholar 

  • Cai L, Xu G, Shi C, Guo D, Wang X, Luo J (2015) Telodendrimer nanocarrier for co-delivery of paclitaxel and cisplatin: a synergistic combination nanotherapy for ovarian cancer treatment. Biomaterials 37:456–468

    Article  CAS  PubMed  Google Scholar 

  • Chipman SD, Oldham FB, Pezzoni G, Singer JW (2006) Biological and clinical characterization of paclitaxel poliglumex (PPX, CT-2103), a macromolecular polymer-drug conjugate. Int J Nanomedicine 1(4):375–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chitkara D, Singh S, Kumar V, Danguah M, Behrman SW, Kumar N, Mahato RI (2012) Micellar delivery of cyclopamine and gefitinib for treating pancreatic cancer. Mol Pharm 9(8):2350–2357

    CAS  PubMed  Google Scholar 

  • Cho H, Lai TC, Kwon GS (2013) Poly (ethylene glycol)-block-poly(epsilon-caprolactone) micelles for combination drug delivery: evaluation of paclitaxel, cyclopamine and gossypol in intraperitoneal xenograft models of ovarian cancer. J Control Release 166:1–9

    Article  CAS  PubMed  Google Scholar 

  • Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58(3):621–681

    Article  CAS  PubMed  Google Scholar 

  • Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70(2):440–446

    Article  CAS  PubMed  Google Scholar 

  • Colilla M, Manzano M, Izquierdo-Barba I, Vallet-Regi M, Boissiere C, Sanchez C (2010) Advanced drug delivery vectors with tailored surface properties made of mesoporous binary oxides submicronic spheres. Chem Mater 22(5):1821–1830

    Article  CAS  Google Scholar 

  • Croy SR, Kwon GS (2006) Polymeric micelles for drug delivery. Curr Pharm Des 12:4669–4684

    Article  CAS  PubMed  Google Scholar 

  • De La Taille A, Vacherot F, Salomon L, Druel C, De Gil Diez Medina S, Abbou C, Buttyan R, Chopin D (2001) Hormone-refractory prostate cancer: a multi-step and multi-event process. Prostate Cancer Prostatic Dis 4(4):204–212

    Article  CAS  Google Scholar 

  • Delbaldo C, Michiels S, Syz N, Soria JC, Le Chevalier T, Pignon JP (2004) Benefits of adding a drug to a single-agent or a 2-agent chemotherapy regimen in advanced non-small-cell lung cancer: a meta-analysis. JAMA 292(4):470–484

    Article  CAS  PubMed  Google Scholar 

  • Desale SS, Cohen SM, Zhao Y, Kabanov AV, Bronich TK (2013) Biodegradable hybrid polymer micelles for combination drug therapy in ovarian cancer. J Control Release 171(3):339–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Maio M, Chiodini P, Georgoulias V, Hatzidaki D, Takeda K, Wachters FM, Gebbia V, Smit EF, Morabito A, Gallo C, Perrone F, Gridelli C (2009) Meta-analysis of single-agent chemotherapy compared with combination chemotherapy as second-line treatment of advanced non-small-cell lung cancer. J Clin Oncol 27(11):1836–1843

    Article  PubMed  CAS  Google Scholar 

  • Dilnawaz F, Singh A, Mohanty C, Sahoo SK (2010) Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials 31(13):3694–3706

    Article  CAS  PubMed  Google Scholar 

  • Dong JT (2006) Prevalent mutations in prostate cancer. J Cell Biochem 97(3):433–447

    Article  CAS  PubMed  Google Scholar 

  • Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701

    Article  CAS  PubMed  Google Scholar 

  • Duncan R, Vicent MJ, Greco F, Nicholson RI (2005) Polymer-drug conjugates: towards a novel approach for the treatment of endocrine-related cancer. Endocr Relat Cancer 12:S189–S199

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Nakamura H, Marda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63(3):136–151

    Article  CAS  PubMed  Google Scholar 

  • Ganta S, Amiji M (2009) Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharm 6(3):928–939

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Xu Y, Qiu L (2015) Enhanced combination therapy effect on paclitaxel-resistant carcinoma by chloroquine co-delivery via liposomes. Int J Nanomedicine 10:6615–6632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greco F, Vicent MJ (2008) Polymer-drug conjugates: current status and future trends. Front Biosci 13:2744–2756

    Article  CAS  PubMed  Google Scholar 

  • Greco F, Vicent MJ (2009) Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv Drug Deliver Rev 61:1203–1213

    Article  CAS  Google Scholar 

  • Greco F, Vicent MJ, Gee S, Jones AT, Gee J, Nicholson RI, Duncan R (2007) Investigating the mechanism of enhanced cytotoxicity of HPMA copolymer-Dox-AGM in breast cancer cells. J Control Release 117(1):28–39

    Article  CAS  PubMed  Google Scholar 

  • Grün M, Lauer I, Unger KK (1997) The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Adv Mater 9:254–257

    Article  Google Scholar 

  • Gustafson TP, Cao Q, Wang ST, Berezin MY (2013) Design of irreversible optical nanothermometers for thermal ablations. Chem Commun (Camb) 49(7):680–682

    Article  CAS  Google Scholar 

  • Han Y, He Z, Schulz A, Bronich TK, Jordan R, Luxenhofer R, Kabanov AV (2012) Synergistic combinations of multiple chemotherapeutic agents in high capacity poly(2-oxazoline) micelles. Mol Pharm 9(8):2302–2313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  • Harasym TO, Tardi PG, Harasym NL, Harvie P, Johnstone SA, Mayer LD (2007) Increased preclinical efficacy of irinotecan and floxuridine coencapsulated inside liposomes is associated with tumor delivery of synergistic drug ratios. Oncol Res 16(8):361–374

    PubMed  Google Scholar 

  • Hasenstein JR, Shin HC, Kasmerchak K, Buehler D, Kwon GS, Kozak KR (2012) Antitumor activity of Triolimus: a novel multidrug-loaded micelle containing paclitaxel, rapamycin, and 17-AAG. Mol Cancer Ther 11:2233–2242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Silica-based mesoporous organic-inorganic hybrid materials. Angew Chem Int Ed Engl 45(20):3216–3251

    Article  CAS  PubMed  Google Scholar 

  • Hurley LH (2002) DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer 2:188–200

    Article  CAS  PubMed  Google Scholar 

  • Ismael GF, Rosa DD, Mano MS, Awada A (2008) Novel cytotoxic drugs: old challenges, new solutions. Cancer Treat Rev 34(1):81–91

    Article  CAS  PubMed  Google Scholar 

  • Jia J, Zhu F, Ma X, Cao Z, Li Y, Chen YZ (2009) Mechanism of drug combinations: interaction and network perspectives. Nat Rev Drug Discov 8(2):111–128

    Article  CAS  PubMed  Google Scholar 

  • Johnson SM, Bangham AD, Hill MW, Korn ED (1971) Single bilayer liposomes. Biochim Biophys Acta 233(3):820–826

    Article  CAS  PubMed  Google Scholar 

  • Kaneshiro TL, Lu ZR (2009) Targeted intracellular codelivery of chemotherapeutics and nucleic acid with a well-defined dendrimer-based nanoglobular carrier. Biomaterials 30(29):5660–5666

    Article  CAS  PubMed  Google Scholar 

  • Katragadda U, Teng Q, Rayaprolu BM, Chandran T, Tan C (2011) Multi-drug delivery to tumor cells via micellar nanocarriers. Int J Pharm 419(1–2):281–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Shi Y, Kim JY, Park K, Cheng JX (2010) Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle-cell interaction. Expert Opin Drug Deliv 7:49–62

    Article  CAS  PubMed  Google Scholar 

  • Kitano H (2007) A robustness-based approach to systems-oriented drug design. Nat Rev Drug Discov 6(3):202–210

    Article  CAS  PubMed  Google Scholar 

  • Kopecek J, Kopecková P (2010) HPMA copolymers: origins, early developments, present, and future. Adv Drug Deliv Rev 62(2):122–149

    Article  CAS  PubMed  Google Scholar 

  • Krakovicová H, Etrych T, Ulbrich K (2009) HPMA-based polymer conjugates with drug combination. Eur J Pharm Sci 37(3–4):405–412

    Article  PubMed  CAS  Google Scholar 

  • Lammers T, Subr V, Ulbrich K, Peschke P, Huber PE, Hennink WE, Storm G (2009) Simultaneous delivery of doxorubicin and gemcitabine to tumors in vivo using prototypic polymeric drug carriers. Biomaterials 30(20):3466–3475

    Article  CAS  PubMed  Google Scholar 

  • Lasic DD (1998) Novel applications of liposomes. Trends Biotechnol 16(7):307–321

    Article  CAS  PubMed  Google Scholar 

  • Lee KS, Chung HC, Im SA, Park YH, Kim CS, Kim SB, Rha SY, Lee MY, Ro J (2008) Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat 108(2):241–250

    Article  CAS  PubMed  Google Scholar 

  • Lee SM, O’Halloran TV, Nguyen ST (2010) Polymer-caged nanobins for synergistic cisplatin-doxorubicin combination chemotherapy. J Am Chem Soc 132(48):17130–17138

    Article  CAS  PubMed  Google Scholar 

  • Li L, Liu T, Fu C, Liu H, Tan L, Meng X (2014a) Multifunctional silica-based nanocomposites for cancer nanotheranostics. J Biomed Nanotechnol 10(9):1784–1809

    Article  CAS  PubMed  Google Scholar 

  • Li M, Tang Z, Lv S, Song W, Hong H, Jing X, Zhang Y, Chen X (2014b) Cisplatin crosslinked pH-sensitive nanoparticles for efficient delivery of doxorubicin. Biomaterials 35(12):3851–3864

    Article  CAS  PubMed  Google Scholar 

  • Li XY, Zhao Y, Sun MG, Shi JF, Ju RJ, Zhang CX, Li XT, Zhao WY, Mu LM, Zeng F, Lou JN, Lu WL (2014c) Multifunctional liposomes loaded with paclitaxel and artemether for treatment of invasive brain glioma. Biomaterials 35(21):5591–5604

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Zhao Y, Ng KW, Zhao Y (2013) Integrated hollow mesoporous silica nanoparticles for target drug/siRNA co-delivery. Chemistry 19(46):15593–15603

    Article  CAS  PubMed  Google Scholar 

  • Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1–2):271–284

    Article  CAS  PubMed  Google Scholar 

  • Martinez A, Fuentes-Paniagua E, Baeza A, Sánchez-Nieves J, Cicuendez M, Gómez R, de la Mata FJ, González B, Vallet-Regi M (2015) Mesoporous silica nanoparticles decorated with carbosilane dendrons as new non-viral oligonucleotide. Chemistry 21(44):15651–15666

    Article  CAS  PubMed  Google Scholar 

  • Matsumura Y (2014) The drug discovery by nanomedicine and its clinical experience. Jpn J Clin Oncol 44:515–525

    Article  PubMed  Google Scholar 

  • Matsumura Y, Kataoka K (2009) Preclinical and clinical studies of anti-cancer agent-incorporating polymer micelles. Cancer Sci 100:572–579

    Article  CAS  PubMed  Google Scholar 

  • Mayer LD, Janoff AS (2007) Optimizing combination chemotherapy by controlling drug ratios. Mol Interv 7(4):216–223

    Article  CAS  PubMed  Google Scholar 

  • Meng H, Wang M, Liu H, Liu X, Situ A, Wu B, Ji Z, Chang CH, Nel AE (2015) Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano 9(4):3540–3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills EJ, Thorlund K, Ioannidis JP (2012) Calculating additive treatment effects from multiple randomized trials provides useful estimates of combination therapies. J Clin Epidemiol 65(12):1282–1288

    Article  PubMed  Google Scholar 

  • Minko T, Kopecková P, Kopecek J (2000) Efficacy of the chemotherapeutic action of HPMA copolymer-bound doxorubicin in a solid tumor model of ovarian carcinoma. Int J Cancer 86(1):108–117

    Article  CAS  PubMed  Google Scholar 

  • Mita M, Mita A, Sarantopoulos J, Takimoto CH, Rowinsky EK, Romero O, Angiuli P, Allievi C, Eisenfeld A, Verschraegen CF (2009) Phase I study of paclitaxel poliglumex administered weekly for patients with advanced solid malignancies. Cancer Chemother Pharmacol 64(2):287–295

    Article  CAS  PubMed  Google Scholar 

  • Miyata K, Christie RJ, Kataoka K (2011) Polymeric micelles for nanoscale drug delivery. React Funct Polym 71:227–234

    Article  CAS  Google Scholar 

  • Morton SW, Lee MJ, Deng ZJ, Dreaden EC, Siouve E, Shopsowitz KE, Shah NJ, Yaffe MB, Hammond PT (2014) A nanoparticle-based combination chemotherapy delivery system for enhanced tumor killing by dynamic rewiring of signaling pathways. Sci Signal 7(325):ra44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muhammad F, Guo M, Wang A, Zhao J, Qi W, Guo Y, Zhu G (2014) Responsive delivery of drug cocktail via mesoporous silica nanolamps. J Colloid Interface Sci 434:1–8

    Article  CAS  PubMed  Google Scholar 

  • Muthu MS, Feng SS (2010) Nanopharmacology of liposomes developed for cancer therapy. Nanomedicine (Lond) 5(7):1017–1019

    Article  CAS  Google Scholar 

  • Na HS, Lim YK, Jeong YI, Lee HS, Lim YJ, Kang MS, Cho CS, Lee HC (2010) Combination antitumor effects of micelle-loaded anticancer drugs in a CT-26 murine colorectal carcinoma model. Int J Pharm 383(1–2):192–200

    Article  CAS  PubMed  Google Scholar 

  • O’Brien ME, Socinski MA, Popovich AY, Bondarenko IN, Tomova A, Bilynsky BT, Hotko YS, Ganul VL, Kostinsky IY, Eisenfeld AJ, Sandalic L, Oldham FB, Bandstra B, Sandler AB, Singer JW (2008) J Thorac Oncol 3(7):728–734

    Article  PubMed  Google Scholar 

  • Olson F, Hunt CA, Szoka FC, Vail WJ, Papahadjopoulos D (1979) Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim Biophys Acta 557(1):9–23

    Article  CAS  PubMed  Google Scholar 

  • Pradhan R, Ramasamy T, Choi JY, Kim JH, Poudel BK, Tak JW, Nukolova N, Choi HG, Yong CS, Kim JO (2015) Hyaluronic acid-decorated poly (lactic-co-glycolic acid) nanoparticles for combined delivery of docetaxel and tanespimycin. Carbohydr Polym 123:313–323

    Article  CAS  PubMed  Google Scholar 

  • Putnam D, Kopecek J (1995) Polymer conjugates with anticancer activity. Adv Polym Sci 122:55–123

    Article  CAS  Google Scholar 

  • Ramasamy T, Haider ZS, Tran TH, Choi JY, Jeong JH, Shin BS, Choi HG, Yong CS, Kim JO (2014a) Layer-by-layer assembly of liposomal nanoparticles with PEGylated polyelectrolytes enhances systemic delivery of multiple anticancer drugs. Acta Biomater 10(12):5116–5127

    Article  CAS  PubMed  Google Scholar 

  • Ramasamy T, Kim J, Choi HG, Yong CS, Kim JO (2014b) Novel dual drug-loaded block ionomer complex micelles for enhancing the efficacy of chemotherapy treatments. J Biomed Nanotechnol 10(7):1304–1312

    Article  CAS  PubMed  Google Scholar 

  • Ramasamy T, Kim JH, Choi JY, Tran TH, Choi HG, Yong CS, Kim JO (2014c) pH sensitive polyelectrolyte complex micelles for highly effective combination chemotherapy. J Mater Chem B 2:6324–6333

    Article  CAS  Google Scholar 

  • Ramsay EC, Dos Santos N, Dragowska WH, Laskin JJ, Bally MB (2005) The formulation of lipid-based nanotechnologies for the delivery of fixed dose anticancer drug combinations. Curr Drug Deliv 2(4):341–351

    Article  CAS  PubMed  Google Scholar 

  • Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 32:962–990

    Article  CAS  Google Scholar 

  • Robertson JD, Orrenius S, Zhivotovsky B (2000) Review: nuclear events in apoptosis. J Struct Biol 129(2–3):346–358

    Article  CAS  PubMed  Google Scholar 

  • Sabbatini P, Sill MW, O’Malley D, Adler L, Secord AA (2008) A phase II trial of paclitaxel poliglumex in recurrent or persistent ovarian or primary peritoneal cancer (EOC): a Gynecologic Oncology Group Study. Gynecol Oncol 111(3):455–460

    Article  CAS  PubMed  Google Scholar 

  • Sapra P, Zhao H, Mehlig M, Malaby J, Kraft P, Longley C, Greenberger LM, Horak ID (2008) Novel delivery of SN38 markedly inhibits tumor growth in xenografts, including a camptothecin-11-refractory model. Clin Cancer Res 14(6):1888–1896

    Article  CAS  PubMed  Google Scholar 

  • Scarano W, de Souza P, Stenzel MH (2015) Dual-drug delivery of curcumin and platinum drugs in polymeric micelles enhances the synergistic effects: a double act for the treatment of multi-drug-resistant cancer. Biomater Sci 3(1):163–174

    Article  CAS  PubMed  Google Scholar 

  • Shim G, Lee S, Choi J, Lee S, Kim CW, Oh YK (2014) Liposomal co-delivery of omacetaxine mepesuccinate and doxorubicin for synergistic potentiation of antitumor activity. Pharm Res 31(8):2178–2185

    Article  CAS  PubMed  Google Scholar 

  • Shin HC, Alani AW, Cho H, Bae Y, Kolesar JM, Kwon GS (2011) A 3-in-1 polymeric micelle nanocontainer for poorly water-soluble drugs. Mol Pharm 8:1257–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin HC, Cho H, Lai TC, Kozak KR, Kolesar JM, Kwon GS (2012) Pharmacokinetic study of 3-in-1 poly (ethylene glycol)-block-poly (D, L-lactic acid) micelles carrying paclitaxel, 17-allylamino-17-demethoxygeldanamycin, and rapamycin. J Control Release 163:93–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suggitt M, Bibby MC (2005) 50 years of preclinical anticancer drug screening: empirical to target-driven approaches. Clin Cancer Res 11(3):971–981

    CAS  PubMed  Google Scholar 

  • Tacar O, Sriamornsak P, Dass CR (2013) Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 65(2):157–170

    Article  CAS  PubMed  Google Scholar 

  • Takakura Y, Hashida M (1995) Macromolecular drug carrier systems in cancer chemotherapy: macromolecular prodrugs. Crit Rev Oncol Hematol 18(3):207–231

    Article  CAS  PubMed  Google Scholar 

  • Tardi P, Johnstone S, Harasym N, Xie S, Harasym T, Zisman N, Harvie P, Bermudes D, Mayer L (2009a) In vivo maintenance of synergistic cytarabine:daunorubicin ratios greatly enhances therapeutic efficacy. Leuk Res 33(1):129–139

    Article  CAS  PubMed  Google Scholar 

  • Tardi PG, Dos Santos N, Harasym TO, Johnstone SA, Zisman N, Tsang AW, Bermudes DG, Mayer LD (2009b) Drug ratio-dependent antitumor activity of irinotecan and cisplatin combinations in vitro and in vivo. Mol Cancer Ther 8(8):2266–2275

    Article  CAS  PubMed  Google Scholar 

  • Tekade RK, Dutta T, Gajbhiye V, Jain NK (2009) Exploring dendrimer towards dual drug delivery: pH responsive simultaneous drug-release kinetics. J Microencapsul 26(4):287–296

    Article  CAS  PubMed  Google Scholar 

  • Thapa RK, Youn YS, Jeong JH, Choi HG, Yong CS, Kim JO (2016) Graphene oxide-wrapped PEGylated liquid crystalline nanoparticles for effective chemo-photothermal therapy of metastatic prostate cancer cells. Colloids Surf B Biointerfaces 143:271–277

    Article  CAS  PubMed  Google Scholar 

  • Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145–160

    Article  CAS  PubMed  Google Scholar 

  • Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2012) Global cancer statistics. CA Cancer J Clin 65(2):87–108

    Article  Google Scholar 

  • Touma SE, Goldberg JS, Moench P, Guo X, Tickoo SK, Gudas LJ, Nanus DM (2005) Retionic acid and the histone deacetylase inhibitor trichostatin a inhibit the proliferation of human renal cell carcinoma in a xenograft tumor model. Clin Cancer Res 11(9):3558–3566

    Article  CAS  PubMed  Google Scholar 

  • Tran TH, Nguyen HT, Pham TT, Choi JY, Choi HG, Yong CS, Kim JO (2015) Development of a graphene oxide nanocarrier for dual-drug chemo-phototherapy to overcome drug resistance in cancer. ACS Appl Mater Interfaces 7(51):28647–28655

    Article  PubMed  CAS  Google Scholar 

  • Trewyn BG, Slowing II, Giri S, Chen HT, Lin VS (2007) Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release. Acc Chem Res 40(9):846–853

    Article  CAS  PubMed  Google Scholar 

  • Vallet-Regí M, Colilla M, González B (2011) Medical applications of organic-inorganic hybrid materials within the field of silica-based bioceramics. Chem Soc Rev 40(2):596–607

    Article  PubMed  Google Scholar 

  • Wang H, Zhao Y, Wu Y, Hu YL, Nan K, Nie G, Chen H (2011) Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials 32(32):8281–8290

    Article  CAS  PubMed  Google Scholar 

  • Wang E, Xiong H, Zou D, Xie Z, Huang Y, Jing X, Sun X (2014) Co-delivery of oxaliplatin and demethylcantharidin via a polymer-drug conjugate. Macromol Biosci 14(4):588–596

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Yu XC, Xu SF, Xu M (2015) Paclitaxel and etoposide co-loaded polymeric nanoparticles for the effective combination therapy against human osteosarcoma. J Nanobiotechnol 13:22

    Article  CAS  Google Scholar 

  • Wong MY, Chiu GN (2010) Simultaneous liposomal delivery of quercetin and vincristine for enhanced estrogen-receptor-negative breast cancer treatment. Anticancer Drugs 21(4):401–410

    Article  CAS  PubMed  Google Scholar 

  • Xiao B, Han MK, Viennois E, Wang L, Zhang M, Si X, Merlin D (2015) Hyaluronic acid-functionalized polymeric nanoparticles for colon cancer-targeted combination chemotherapy. Nanoscale 7(42):17745–17755

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Radovic-Moreno AF, Alexis F, Gu FX, Basto PA, Bagalkot V, Jon S, Langer RS, Farokhzad OC (2007) Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle-aptamer bioconjugates. ChemMedChem 2(9):1268–1271

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83(5):761–769

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Li J, Yan M (2016) Targeted hepatocellular carcinoma therapy: transferrin modified, self-assembled polymeric nanomedicine for co-delivery of cisplatin and doxorubicin. Drug Dev Ind Pharm. doi:10.3109/03639045.2016.1160103

    Google Scholar 

  • Zhong J, Li L, Zhu X, Guan S, Yang Q, Zhou Z, Zhang Z, Huang Y (2015) A smart polymeric platform for multistage nucleus-targeted anticancer drug delivery. Biomaterials 65:43–55

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Xu X, Hu M, Qiu L (2015) Co-encapsulation of combretastatin-A4 phosphate and doxorubicin in polymerosomes for synergistic therapy of nasopharyngeal epidermal carcinoma. J Biomed Nanotechnol 11(6):997–1006

    Article  CAS  PubMed  Google Scholar 

  • Zoli W, Ricotti L, Tesei A, Barzanti F, Amadori D (2001) In vitro preclinical models for a rational design of chemotherapy combinations in human tumors. Crit Rev Oncol Hematol 37(1):69–82

    Article  CAS  PubMed  Google Scholar 

  • Zucker D, Barenholz Y (2010) Optimization of vincristine-topotecan combination—paving the way for improved chemotherapy regimens by nanoliposomes. J Control Release 146(3):326–333

    Article  CAS  PubMed  Google Scholar 

  • Zucker D, Andriyanov AV, Steiner A, Raviv U, Barenholz Y (2012) Characterization of PEGylated nanoliposomes co-remotedly loaded with topotecan and vincristine: relating structure and pharmacokinetics to therapeutic efficacy. J Control Release 160(2):281–289

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2015R1A2A2A01004118, 2015R1A2A2A04004806).

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chul Soon Yong or Jong Oh Kim.

Additional information

Ju Yeon Choi and Raj Kumar Thapa contributed equally

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J.Y., Thapa, R.K., Yong, C.S. et al. Nanoparticle-based combination drug delivery systems for synergistic cancer treatment. Journal of Pharmaceutical Investigation 46, 325–339 (2016). https://doi.org/10.1007/s40005-016-0252-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-016-0252-1

Keywords

Navigation