Skip to main content
Log in

Quantitative evaluation of mucoadhesive polymers to compare the mucoadhesion

  • Original Article
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Mucoadhesive drug delivery systems has received noticeable attentions in the pharmaceutical field, resulted in the adhesion of the drug to the tissue for a prolonged period of time. Three kinds of methods such as tensile strength test, mucin particle method and rheology were used to compare the quantitative mucoadhesion of mucoadhesive polymers. Carbomer 940, chitosan, hydroxypropylcellulose, and sodium carboxymethylcellulose were used as mucoadhesive polymers. The mucoadhesion by tensile strength tester using rat stomach were in the order of hydroxypropylcellulose, sodium carboxymethylcellulose, chitosan and carbomer 940. Similarly, in mucin particle method, mucoadhesion was in order of hydroxypropylcellulose, sodium carboxymethylcellulose, chitosan and carbomer 940. The viscosity of mixture with mucin solution was in the order of hydroxypropylcellulose, sodium carboxymethylcellulose, carbomer 940 and chitosan. Still, there is little on the quantitative comparison of individual mucoadhesive polymer using the same mucoadhesion test. So, this study could be a basic data for the selection of mucoadhesive polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbas S, Karangwa E, Bashari M, Hayat K, Hong X, Sharif HR, Zhang X (2015) Fabrication of polymeric nanocapsules from curcumin-loaded nanoemulsion templates by self-assembly. Ultrason Sonochem 23:81–92

    Article  CAS  PubMed  Google Scholar 

  • Aka-Any-Grah A, Bouchemal K, Koffi A, Agnely F, Zhang M, Djabourov M, Ponchel G (2010) Formulation of mucoadhesive vaginal hydrogels insensitive to dilution with vaginal fluids. Eur J Pharm Biopharm 76:296–303

    Article  CAS  PubMed  Google Scholar 

  • Andrés-Guerrero V, Molina-Martínez IT, Peral A, de las Heras B, Pintor J, Herrero-Vanrell R (2011) The use of mucoadhesive polymers to enhance the hypotensive effect of a melatonin analogue, 5-MCA-NAT, in rabbit eyes. Invest Ophthalmol Vis Sci 52:1507–1515

    Article  PubMed  Google Scholar 

  • Andrews GP, Laverty TP, Jones DS (2009) Mucoadhesive polymeric platforms for controlled drug delivery. Eur J Pharm Biopharm 71:505–518

    Article  CAS  PubMed  Google Scholar 

  • Aslani A, Ghannadi A, Najafi H (2013) Design, formulation and evaluation of a mucoadhesive gel from Quercus brantii L. and coriandrum sativum L. as periodontal drug delivery. Adv Biomed Res 2:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Baloğlu E, Ozyazici M, Hizarcioğlu SY, Karavana HA (2003) An in vitro investigation for vaginal bioadhesive formulations: bioadhesive properties and swelling states of polymer mixtures. Farmaco 58:391–396

    Article  PubMed  Google Scholar 

  • Behl CR, Pimplaskar HK, Sileno J, deMeireles J, Romeo VD (1998) Effects of physicochemical properties and other factors on systemic nasal drug delivery. Adv Drug Deliv Rev 29:89–116

    Article  CAS  PubMed  Google Scholar 

  • Carvalho FC, Bruschi ML, Evangelista RC, Gremiao MPD (2010) Mucoadhesive drug delivery systems. Braz J Pharm Sci 46:1–17

    Article  CAS  Google Scholar 

  • Chawla V, Saraf SA (2012) Rheological studies on solid lipid nanoparticle based carbopol gels of aceclofenac. Colloids Surf B: Biointerfaces 92:293–298

    Article  CAS  PubMed  Google Scholar 

  • Chien YW (1992) Nasal drug delivery systems. In: Swacrbrick J (ed) Novel drug delivery systems. Marcel Dekker, New York, pp 139–196

    Google Scholar 

  • Cleary J, Bromberg L, Magner E (2004) Adhesion of polyether-modified poly(acrylic acid) to mucin. Langmuir 20:9755–9762

    Article  CAS  PubMed  Google Scholar 

  • Cui F, Qian F, Yin C (2006) Preparation and characterization of mucoadhesive polymer-coated nanoparticles. Int J Pharm 316:154–161

    Article  CAS  PubMed  Google Scholar 

  • Davidovich-Pinhas M, Harari O, Bianco-Peled H (2009) Evaluating the mucoadhesive properties of drug delivery systems based on hydrated thiolated alginate. J Control Rel 13:638–644

    Google Scholar 

  • Duchene D, Touchard F, Peppas NA (1988) Pharmaceutical and medical aspects of bioadhesive systems for drug administration. Drug Dev Ind Pharm 14:283–318

    Article  CAS  Google Scholar 

  • Ferrari F, Bertoni M, Rossi S, Bonferoni MC, Caramella C, Waring MJ, Aulton ME (1996) Comparative rheomechanical and adhesive properties of two hydrocolloid dressings: dependence on the degree of hydration. Drug Dev Ind Pharm 22:1223–1230

    Article  CAS  Google Scholar 

  • Fini A, Bergamante V, Ceschel GC (2011) Mucoadhesive gels designed for the controlled release of chlorhexidine in the oral cavity. Pharmaceutics 3:665–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaserod O, Jolliffe IG, Hampson FC, Dettmar PW, Skjak-Braek G (1998) The enhancement of the bioadhesive properties of calcium alginate gel beads by coating with chitosan. Int J Pharm 175:237–246

    Article  CAS  Google Scholar 

  • Gurny R, Meyer JM, Peppas NA (1984) Bioadhesive intraoral release systems: design, testing and analysis. Biomaterials 5:336–340

    Article  CAS  PubMed  Google Scholar 

  • Hagerstrom H, Edsman K (2001) Interpretation of mucoadhesive properties of polymer gel preparations using a tensile strength method. J Pharm Pharmacology 53:1589–1599

    Article  CAS  Google Scholar 

  • Hagesaether E, Hiorth M, Sande SA (2009) Mucoadhesion and drug permeability of free mixed films of pectin and chitosan: an in vitro and ex vivo study. Eur J Pharm Biopharm 71:325–331

    Article  CAS  PubMed  Google Scholar 

  • Hascicek C, Gonul N, Erk N (2003) Mucoadhesive microspheres containing gentamicin sulfate for nasal administration: preparation and in vitro characterization. Farmaco 58:11–16

    Article  CAS  PubMed  Google Scholar 

  • Hassan EE, Gallo JM (1990) A simple rheological method for the in vitro assessment of mucin-polymer bioadhesive bond strength. Pharm Res 7:491–495

    Article  CAS  PubMed  Google Scholar 

  • Illum L (2003) Nasal drug delivery—possibilities, problems and solutions. J Control Rel 87:187–198

    Article  CAS  Google Scholar 

  • Illum L, Jabbal-Gill I, Hinchcliffe M (2001) Chitosan as a novel nasal delivery system for vaccines. Adv Drug Deliv Rev 51:81–96

    Article  CAS  PubMed  Google Scholar 

  • Ishizu K, Yamashita M, Lchimura A (1997) Microsphere synthesis by emulsion copolymerization of methyl methacrylate with poly(acrylic acid) macromonomers. Polymer 38:5471–5474

    Article  CAS  Google Scholar 

  • Jones DS, Woolfson AD, Brown AF (1997) Textural, viscoelastic and mucoadhesive properties of pharmaceutical gels composed of cellulose polymers. Int J Pharm 151:23–233

    Article  Google Scholar 

  • Lee CF (2002) The effect of aqueous medium contains poly(acrylic acid) on the morphology of composite polymer particle produced by two stages soapless seeded emulsion polymerization. Polymer 43:5763–5769

    Article  CAS  Google Scholar 

  • Mikos AG, Peppas NA (1990) Bioadhesive analysis of controlled-release systems. IV. An experimental method for testing the adhesion of microparticles with mucus. J Control Rel 12:31–37

    Article  CAS  Google Scholar 

  • Mortazavi SA (1995) An in vitro assessment of mucus/mucoadhesive interactions. Int J Pharm 124:173–182

    Article  CAS  Google Scholar 

  • Nielsen LS, Schubert L, Hansen J (1998) Bioadhesive drug delivery systems. I. Haracterisation of mucoadhesive properties of systems based on glyceryl mono-oleate and glyceryl monolinoleate. Eur J Pharm Sci 6:231–239

    Article  CAS  PubMed  Google Scholar 

  • Park H, Robinson JR (1985) Physico-chemical properties of water insoluble polymers important to mucin/epithelial adhesion. J Control Rel 2:47–57

    Article  CAS  Google Scholar 

  • Pawar D, Goyal AK, Mangal S, Mishra N, Vaidya B, Tiwari S, Jain AK, Vyas SP (2010) Evaluation of mucoadhesive PLGA microparticles for nasal immunization. AAPS J 12:130–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillipson M, Johansson MEV, Henriksnas J, Petersson J, Gendler SJ, Sandler S, Persson AEG, Hansson GC, Holm L (2008) The gastric mucus layers:constituents and regulation of accumulation. Am J Physiol Gastrointest Liver Physiol 295:G806–G812

    Article  CAS  PubMed  Google Scholar 

  • Ponchel G, Touchard F, Wouessidjewe D, Duchene D, Peppas NA (1987) Bioadhesive analysis of controlled-release systems. III. Bioadhesive and release behavior of metronidazole-containing poly(acrylic acid)–hydroxypropyl methylcellulose systems. Int J Pharm 38:65–70

    Article  CAS  Google Scholar 

  • Romanazzi G, Gabler FM, Margosan D, Mackey BE, Smilanick JL (2009) Effect of chitosan dissolved in different acids on its ability to control postharvest gray mold of table grape. Phytopathology 99:1028–1036

    Article  CAS  PubMed  Google Scholar 

  • Salamat-Miller N, Chittchang M, Johnston TP (2005) The use of mucoadhesive polymers in buccal drug delivery. Adv Drug Deliv Rev 57:1666–1691

    Article  CAS  PubMed  Google Scholar 

  • Smart JD, Kellaway IW, Worthington HEC (1984) An in vitro investigation of mucosa-adhesive materials for use in controlled drug delivery. J Pharm Pharmacology 36:295–299

    Article  CAS  Google Scholar 

  • Sonia TA, Sharma CP (2011) Chitosan and its derivatives for drug delivery perspective. In: Jayakumar R, Prabaharan M, Muzzarelli RAA (eds) Chitosan for biomaterials I. Springer, Berlin, pp 23–53

    Chapter  Google Scholar 

  • Sudhakar Y, Kuotsu K, Bandyopadhyay AK (2006) Buccal bioadhesive drug delivery:a promising option for orally less efficient drugs. J Control Rel 114:15–40

    Article  CAS  Google Scholar 

  • Takeuchi H, Thongborisute J, Matsui Y, Sugihara H, Yamamoto H, Kawashima Y (2005) Novel mucoadhesion tests for polymers and polymer-coated particles to design optimal mucoadhesive drug delivery systems. Adv Drug Deliv Rev 57:1583–1594

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Ueyama H, Ogata M, Daikoku T, Morimoto M, Kitagawa A, Imajo Y, Tahara T, Inkyo M, Yamaguchi N, Nagata S (2014) Evaluation of nanodispersion of iron oxides using various polymers. Indian J Pharm Sci 76:54–61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tangri P, Madhav NVS (2011) Oral mucoadhesive drug delivery systems: a review. Int J Biopharm 2:36–46

    Google Scholar 

  • Taylan B, Capan Y, Guven O, Kes S, Hincal AA (1996) Design and evaluation of sustained-release and buccal adhesive propranolol hydrochloride tablets. J Control Rel 38:11–20

    Article  CAS  Google Scholar 

  • Teng CLC, Ho NFH (1987) Mechanistic studies in the simultaneous flow and adsorption of polymer-coated latex particles on intestinal mucus I: methods and physical model development. J Control Rel 6:133–149

    Article  CAS  Google Scholar 

  • Thongborisute J, Takeuchi H (2008) Evaluation of mucoadhesiveness of polymers by BIACORE method and mucin-particle method. Int J Pharm 354:204–209

    Article  CAS  PubMed  Google Scholar 

  • Tilloo SK, Rasala TM, Kale VV (2011) Mucoadhesive microparticulate drug delivery system. Int J Pharm Sci Rev Res 9:52–56

    CAS  Google Scholar 

  • Tobyn MJ, Johnson JR, Dettmar PW (1995) Factors affecting in vitro gastric mucoadhesion I. Test conditions and instrumental parameters. Eur J Pharm Biopharm 41:235–241

    CAS  Google Scholar 

  • Woertz C, Preis M, Breitkreutz J, Kleinebudde P (2013) Assessment of test methods evaluating mucoadhesive polymers and dosage forms: An overview. Eur J Pharm Biopharm 85:843–853

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

All authors (C.A. Lee, B.S. Kim, C.W. Cho) declare that they have no conflict of interest. This study was supported by Chungnam National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheong-Weon Cho.

Additional information

Cho-A Lee and Bo-Sik Kim equally contribute to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CA., Kim, BS. & Cho, CW. Quantitative evaluation of mucoadhesive polymers to compare the mucoadhesion. Journal of Pharmaceutical Investigation 46, 189–194 (2016). https://doi.org/10.1007/s40005-016-0233-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-016-0233-4

Keywords

Navigation