Skip to main content
Log in

Physically-strengthened collagen bioactive nanocomposite gels for bone: A feasibility study

  • Original Article
  • Biomaterials
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Collagen hydrogel systems have been limited in their uses for hard tissue engineering due to their poor mechanical properties in spite of their excellent biocompatibility. Physical strengthening and incorporation of the inorganic substances are considered as promising ways to improve mechanical stability of the collagen gel, while providing effective biomimetic environment for cells. Here, we developed three-dimensional matrix by rolling up the plastically-compressed collagen hydrogel composites with mesoporous bioactive glass nanoparticle (BGn). Monodispersed BGn with a size of ~90 nm was well incorporated within the collagen matrix which has nanofibrillar structure. The mechanical properties of the composite hydrogels measured by dynamic mechanical analysis were significantly improved by the compression of the hydrogels and further improved by addition of BGn into hydrogels. Moreover, the proliferation rate and osteogenic differentiation of rat bone marrow derived mesenchymal stem cells cultured within the composite hydrogels were enhanced by incorporation of BGn. The results suggest that physically-strengthened nanocomposite collagen hydrogel would be useful in hard tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. MG Patino, ME Neiders, S Andreana, et al., Collagen as an implantable material in medicine and dentistry, J Oral Implantol, 28, 220 (2002).

    Article  PubMed  Google Scholar 

  2. R Parenteau-Bareil, R Gauvin, F Berthod, Collagen-Based Biomaterials for Tissue Engineering Applications, Materials, 3, 1863 (2010).

    Article  CAS  Google Scholar 

  3. DM Veríssimo, RFC Leitão, RA Ribeiro, et al., Polyanionic collagen membranes for guided tissue regeneration: Effect of progressive glutaraldehyde cross-linking on biocompatibility and degradation, Acta Biomater, 6, 4011 (2010).

    Article  PubMed  Google Scholar 

  4. D Becker, U Geißler, U Hempel, et al., Proliferation and differentiation of rat calvarial osteoblasts on type I collagencoated titanium alloy, J Biomed Mater Res, 59, 516 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. SJ Kew, JH Gwynne, D Enea, et al., Regeneration and repair of tendon and ligament tissue using collagen fibre biomaterials, Acta Biomater, 7, 3237 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. W Zhang, J Chen, J Tao, et al., The use of type 1 collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair, Biomaterials, 34, 713 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. EE Antoine, PP Vlachos, MN Rylander, Review of Collagen I Hydrogels for Bioengineered Tissue Microenvironments: Characterization of Mechanics, Structure, and Transport, Tissue Eng Part B Rev, 20, 683 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. E Hesse, TE Hefferan, JE Tarara, et al., Collagen type I hydrogel allows migration, proliferation, and osteogenic differentiation of rat bone marrow stromal cells, J Biomed Mater Res A, 94, 442 (2010).

    PubMed Central  PubMed  Google Scholar 

  9. TR Hoare, DS Kohane, Hydrogels in drug delivery: Progress and challenges, Polymer, 49, 1993 (2008).

    Article  CAS  Google Scholar 

  10. U Nöth, L Rackwitz, A Heymer, et al., Chondrogenic differentiation of human mesenchymal stem cells in collagen type I hydrogels, J Biomed Mater Res A, 83, 626 (2007).

    Article  PubMed  Google Scholar 

  11. BN Mason, A Starchenko, RM Williams, et al., Tuning threedimensional collagen matrix stiffness independently of collagen concentration modulates endothelial cell behavior, Acta Biomater, 9, 4635 (2013).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. JH Lee, JY Lee, SH Yang, et al., Carbon nanotube–collagen three-dimensional culture of mesenchymal stem cells promotes expression of neural phenotypes and secretion of neurotrophic factors, Acta Biomater, 10, 4425 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. GA Busby, MH Grant, SP MacKay, et al., Confined compression of collagen hydrogels, J Biomech, 46, 837 (2013).

    Article  PubMed  Google Scholar 

  14. RA Brown, M Wiseman, CB Chuo, et al., Ultrarapid Engineering of Biomimetic Materials and Tissues: Fabrication of Nano- and Microstructures by Plastic Compression, Adv Funct Mater, 15, 1762 (2005).

    Article  CAS  Google Scholar 

  15. U Cheema, RA Brown, Rapid Fabrication of Living Tissue Models by Collagen Plastic Compression: Understanding Three-Dimensional Cell Matrix Repair In Vitro, Adv Wound Care, 2, 176 (2013).

    Article  Google Scholar 

  16. F Laydi, R Rahouadj, G Cauchois, et al., Hydroxyapatite incorporated into collagen gels for mesenchymal stem cell culture, Biomed Mater Eng, 23, 311 (2013).

    CAS  PubMed  Google Scholar 

  17. AK Gaharwar, SA Dammu, JM Canter, et al., Highly Extensible, Tough, and Elastomeric Nanocomposite Hydrogels from Poly(ethylene glycol) and Hydroxyapatite Nanoparticles, Biomacromolecules, 12, 1641 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. JA Killion, S Kehoe, LM Geever, et al., Hydrogel/bioactive glass composites for bone regeneration applications: Synthesis and characterisation, Mater Sci Eng C Mater Biol Appl, 33, 4203 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. A Gantar, LP da Silva, JM Oliveira, et al., Nanoparticulate bioactive-glass-reinforced gellan-gum hydrogels for bone-tissue engineering, Mater Sci Eng C Mater Biol Appl, 43, 27 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. A El-Fiqi, T-H Kim, M Kim, et al., Capacity of mesoporous bioactive glass nanoparticles to deliver therapeutic molecules, Nanoscale, 4, 7475 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. A El-Fiqi, JH Lee, EJ Lee, et al., Collagen hydrogels incorporated with surface-aminated mesoporous nanobioactive glass: Improvement of physicochemical stability and mechanical properties is effective for hard tissue engineering, Acta Biomater, 9, 9508 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. S Labbaf, O Tsigkou, KH Müller, et al., Spherical bioactive glass particles and their interaction with human mesenchymal stem cells in vitro, Biomaterials, 32, 1010 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. B Marelli, CE Ghezzi, D Mohn, et al., Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function, Biomaterials, 32, 8915 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. T Kokubo, H Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 27, 2907 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. DE Discher, P Janmey, YL Wang, Tissue Cells Feel and Respond to the Stiffness of Their Substrate, Science, 310, 1139 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. T Yeung, PC Georges, LA Flanagan, et al., Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion, Cell Motil Cytoskeleton, 60, 24 (2005).

    Article  PubMed  Google Scholar 

  27. ND Evans, C Minelli, E Gentleman, et al., Substrate stiffness affects early differentiation events in embryonic stem cells, Eur Cell Mater, 18, 1 (2009).

    CAS  PubMed  Google Scholar 

  28. LHHO Damink, PJ Dijkstra, MJA Van Luyn, et al., Glutaraldehyde as a crosslinking agent for collagen-based biomaterials, J Mater Sci Mater Med, 6, 460 (1995).

    Article  Google Scholar 

  29. BP Chan, OC Chan, KF So, Effects of photochemical crosslinking on the microstructure of collagen and a feasibility study on controlled protein release, Acta Biomater, 4, 1627 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. JM Orban, LB Wilson, JA Kofroth, et al., Crosslinking of collagen gels by transglutaminase, J Biomed Mater Res A, 68, 756 (2004).

    Article  PubMed  Google Scholar 

  31. MJA van Luyn, PB van Wachem, LO Damink, et al., Relations between in vitro cytotoxicity and crosslinked dermal sheep collagens, J Biomed Mater Res, 26, 1091 (1992).

    Article  PubMed  Google Scholar 

  32. CE Ghezzi, N Muja, B Marelli, et al., Real time responses of fibroblasts to plastically compressed fibrillar collagen hydrogels, Biomaterials, 32, 4761 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. J Li, WRK Illeperuma, Z Suo, et al., Hybrid Hydrogels with Extremely High Stiffness and Toughness, ACS Macro Lett, 3, 520 (2014).

    Article  CAS  Google Scholar 

  34. M Kikuchi, S Itoh, S Ichinose, et al., Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo, Biomaterials, 22, 1705 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. JE Aubin, Regulation of Osteoblast Formation and Function, Rev Endocr Metab Disord, 2, 81 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheol-Min Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.H., El-Fiqi, A., Han, CM. et al. Physically-strengthened collagen bioactive nanocomposite gels for bone: A feasibility study. Tissue Eng Regen Med 12, 90–97 (2015). https://doi.org/10.1007/s13770-015-0102-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-015-0102-7

Keywords

Navigation