Skip to main content
Log in

Guidance of spiral ganglion neurons over 3 mm using protein patterned surfaces in Co-culture

  • Original Article
  • Biomaterials
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Despite considerable advances in neural prosthetics there are still few clinical devices capable of effectively compensating for the loss of a physiological function. By far the most successful to date are cochlear implants, which can restore the auditory function in patients with severe sensorineural impairment. These implants have electrode arrays that directly stimulate the remaining neurons and several strategies are applied to encourage neurons to interact intimately with the electrodes. Integration of the residual neurons into the circuits can be aided by appropriate micro-patterning on the electrodes’ surfaces to guide the regenerating neurons. Here we describe experiments revealing key features of the interface between auditory cell cultures and surface patterning. In the presented study linear regenerative outgrowth of spiral ganglion axons occurred over distances of several hundred micrometers in the presence of extracellular protein cues placed precisely on surfaces by micro-contact printing. The protein pattern guided the outgrowth of spiral ganglion neurons along interconnected networks of non-neuronal cells. High-precision alignment of axons with no branching or deviation was influenced by, but not dependent upon, the presence of non-glial cells. The findings show that micro-patterning provides a versatile, robust system that can not only guide the outgrowth of individual neurons but also regulate the orientation of diverse cell types in culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BA Nayagam, MA Muniak, DK Ryugo, The spiral ganglion: connecting the peripheral and central auditory systems, Hear Res, 278, 2 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  2. RV Shannon, Advances in auditory prostheses, Curr Opin Neurol, 25, 61 (2012).

    Article  PubMed  Google Scholar 

  3. ML Carlson, CL Driscoll, RH Gifford, et al., Cochlear implantation: current and future device options, Otolaryngol Clin North Am, 45, 221 (2012).

    Article  PubMed  Google Scholar 

  4. D Wei, Z Jin, L Järlebark, E Scarfone, M Ulfendahl, Survival, synaptogenesis, and regeneration of adult mouse spiral ganglion neurons in vitro, Dev Neurobiol, 67, 108 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. SB Shibata, SR Cortez, LA Beyer, et al., Transgenic BDNF induces nerve fiber regrowth into the auditory epithelium in deaf cochleae, Exp Neurol, 223, 464 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. AK Wise, CR Hume, BO Flynn, et al., Effects of localized neurotrophin gene expression on spiral ganglion neuron resprouting in the deafened cochlea, Mol Ther, 18, 1111 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. H Jia, J Wang, F François, et al., Molecular and cellular mechanisms of loss of residual hearing after cochlear implantation, Ann Otol Rhinol Laryngol, 122, 33 (2013).

    PubMed  Google Scholar 

  8. T Sekiya, M Matsumoto, K Kojima, et al., Mechanical stressinduced reactive gliosis in the auditory nerve and cochlear nucleus, J Neurosurg, 114, 414 (2011).

    Article  PubMed  Google Scholar 

  9. D Pesen, A Erlandsson, M Ulfendahl, et al., Image reversal for direct electron beam patterning of protein coated surfaces, Lab Chip, 11, 1603 (2007).

    Article  Google Scholar 

  10. M Mrksich, GM Whitesides, Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells, Annu Rev Biophys Biomol Struct, 25, 55 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. AK Magnusson, P Linderholm, C Vieider, et al., Surface protein patterns govern morphology, proliferation, and expression of cellular markers but have no effect on physiological properties of cortical precursor cells, J Neurosci Res, 86, 2363 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. S Khalifa, P Björk, C Vieider, et al., Neuronal polarity mediated by micro-scale protein patterns and Schwann cells in vitro, J Tissue Eng Regen Med, 10, 1 (2013).

    Article  Google Scholar 

  13. S Volkenstein, D Brors, S Hansen, et al., Auditory development in progressive motor neuronopathy mouse mutants, Neurosci Lett, 465, 45 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. M Lie, M Grover, DS Whitlon, Accelerated neurite growth from spiral ganglion neurons exposed to the Rho kinase inhibitor H-1152, Neuroscience, 169, 855 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. M Barclay, JP Julien, AF Ryan, et al., Type III intermediate filament peripherin inhibits neuritogenesis in type II spiral ganglion neurons in vitro, Neurosci Lett, 478, 51 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. P Liang, LH Jin, T Liang, et al., Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats, Chin Med J, 119, 1331 (2006).

    PubMed  Google Scholar 

  17. M Vieira, BL Christensen, BC Wheeler, et al., Survival and stimulation of neurite outgrowth in a serum-free culture of spiral ganglion neurons from adult mice, Hear Res, 230, 17 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. N Berkingali, A Warnecke, P Gomes, et al., Neurite outgrowth on cultured spiral ganglion neurons induced by erythropoietin, Hear Res, 243, 121 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. DS Whitlon, D Tieu, M Grover, et al., Spontaneous association of glial cells with regrowing neurites in mixed cultures of dissociated spiral ganglia, Neuroscience, 161, 227 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. JC Clarke, BW Tuft, JD Clinger, et al., Micropatterned methacrylate polymers direct spiral ganglion neurite and Schwann cell growth, Hear Res, 278, 96 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. U Reich, E Fadeeva, A Warnecke, et al., Directing neuronal cell growth on implant material surfaces by microstructuring, J Biomed Mater Res B Appl Biomater, 100, 940 (2012).

    Article  PubMed  Google Scholar 

  22. BW Tuft, S Li, L Xu, et al., Photopolymerized microfeatures for directed spiral ganglion neurite and Schwann cell growth, Biomaterials, 34, 42 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. A Höke, T Brushart, Introduction to special issue: Challenges and opportunities for regeneration in the peripheral nervous system, Exp Neurol, 223, 1 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  24. LQ Bundesen, TA Scheel, BS Bregman, et al., Ephrin-B2 and EphB2 regulation of astrocyte-meningeal fibroblast interactions in response to spinal cord lesions in adult rats, J Neurosci, 23, 7789 (2003).

    CAS  PubMed  Google Scholar 

  25. HA Kim, T Mindos, DB Parkinson, Plastic fantastic: Schwann cells and repair of the Peripheral Nervous System, Stem Cells Transl Med, 2, 553 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaden Khalifa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalifa, S., Ulfendahl, M., Björk, P. et al. Guidance of spiral ganglion neurons over 3 mm using protein patterned surfaces in Co-culture. Tissue Eng Regen Med 11, 187–194 (2014). https://doi.org/10.1007/s13770-014-0035-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-014-0035-6

Key words

Navigation