Skip to main content
Log in

Fabrication and evaluation of growth factor-immobilized injectable microspheres for the soft tissue augmentation

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Growth factor [basic fibroblast growth factor (bFGF) or epidermal growth factor (EGF)]-immobilized polycaprolactone (PCL)/Pluronic F127 microspheres were fabricated to investigate their potential use as an injectable bioactive filler for enhancing soft tissue augmentation. It was expected that the microspheres may stimulate the regeneration of soft tissues by the sustained release of the growth factors as well as provide a bulking effect by the injected volume of the microspheres, and thus allow more effective long-term filling effect. The PCL/F127 microspheres were fabricated by an isolated particle-melting method, and the growth factors were easily immobilized onto the surfaces of the PCL/F127 microspheres via heparin binding. From an in vivo animal study, it was observed that the mixture of both bFGF-immobilized and EGF-immobilized microspheres lead to effective soft tissue augmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CW Patrick, Adipose tissue engineering: the future of breast and fost tissue reconstruction following tumor resection, Semin Surg Oncol, 19, 302 (2000).

    Article  PubMed  Google Scholar 

  2. S Eremia, N Newman, Long-term follow-up after autologous fat grafting: analysis of results from 116 patients followed at least 12 months after receiving the last of a minimum of two treatments, Dermatol Surg, 26, 1150 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. HW Hörl, AM Feller, E Biemer, Technique for liposuction fat reimplantation and long-term volume evaluation by magnetic resonance imaging, Ann Plast Surg, 26, 248 (1991).

    Article  PubMed  Google Scholar 

  4. KY Lee, DJ Mooney, Hydrogels for tissue engineering, Chem Rev, 101, 1869 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. F Duranti, G Salti, B Bovani et al., Injectable hyaluronic acid gel for soft tissue augmentation: a clinical and histological study, Dermatol Surg, 24, 1317 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. DA Ellis, AS Makdessian, DJ Brown, Survey of future injectables, Facial Plast Surg Clin North Am, 9, 405 (2001).

    CAS  PubMed  Google Scholar 

  7. BL Eppley, B Dadvand, Injectable soft-tissue fillers: clinical overview, Plast Reconstr Surg, 118, 98 (2006).

    Article  Google Scholar 

  8. G Lemperle, N Gauthier-Hazan, M Lemperle, PMMA Microspheres (Artecoll) for long-lasting correction of wrinkles: refinements and statistical results, Aesthetic Plast Surg, 22, 356 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. LS Toledo, R Mauad, Fat injection: a 20-year revision, Clin Plast Surg, 33, 47 (2006).

    Article  PubMed  Google Scholar 

  10. J Guerrerosantos, Long-term outcome of autologous fat trasnsplantation in aesthetic facial recontouring: sixteen years of experience with 1936 cases, Clin Plast Surg, 27, 515 (2007)

    Google Scholar 

  11. MR Kaufman, JP Bradley, B Dickinson, et al., Autologous fat transfer national consensus survey: trends in techniques for harvest preparation, and application, and perception of shortand long-term results, Plast Reconstr Surg, 119, 323 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. F Neuber, Fettransplantation, Chir Kongr Verhandl Dsch Gesellch Chir, 22, 66 (1893).

    Google Scholar 

  13. A Lubkowska, B Dolegowska, G Banfi, Growth factor content in PRP and their applicability in medicine, J Biol Regul Homeost Agents, 26, 3S (2012).

    CAS  PubMed  Google Scholar 

  14. T Hazel, NH Edward, CP Joshua, et al., Adipose-derived stem cells: Characterization and current application in orthopaedic tissue repair, Exp Biol Med, 234, 1 (2009).

    Article  Google Scholar 

  15. YS Choi, SN Park, H Suh, Adipoge tissue engineering using mesenchymal stem cells attached to injectable PLGA spheres, Biomaterials, 26, 5855 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. W Tsuji, T Inamoto, H Yamashiro et al., Adipogenesis induced by human adipose tissue-derived stem cells, Tissue Eng Part A, 15, 83 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. X Wang, C Li, Y Zheng et al., Bone marrow mesenchymal stem cells increase skin regeneration efficiency in skin and soft tissue expansion, Expert Opin Biol Ther, 12, 1129 (2012).

    Article  PubMed  Google Scholar 

  18. LL He, XW Chen, YZ Zhu, Effect of reinforcing Qi strength spleen in the expression of bFGF and EGF in treating serious soft tissue injury, Zhongguo Gu Shang, 23, 530 (2010).

    PubMed  Google Scholar 

  19. K Hori, C Sotozono, J Hamuro, et al., Controlled-release of epidermal growth factor from cationized gelatin hydrogel enhances corneal epithelial wound healing, J Control Release, 118, 169 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Y Kimura, M Ozeki, T Inamoto, et al., Adipose tissue engineering based on human preadipocytes combined with gelatin microspheres containing basic fibroblast growth factor, Biomaterials, 24, 2513 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. ML Moya, MH Cheng, JJ Huang, et al., The effect of FGF-1 loaded alginate microbeads on neovascularization and adipogenesis in a vascular pedicle model of adipose tissue engineering, Biomaterials, 31, 2816 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. O Jeon, SJ Song, KJ Lee, et al., Mechanical properties and degradation behaviors of hyaluronic acid hydrogels crosslinked at various cross-linking densities, Carbohydr Polym, 70, 251 (2007).

    Article  CAS  Google Scholar 

  23. K Kofuji, T Ito, Y Murata, et al., The controlled release of a drug from biodegradable chitosan gel beads, Chem Pharm Bull, 48, 579 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. C Mao, WS Kisaalita, Characterization of 3-D collagen hydrogels for functional cell-based biosensing, Biosen Bioelect, 19, 1075 (2004).

    Article  Google Scholar 

  25. RS Kirsner, WH Eaglstein, Wound healing process, Dermatol Clin, 11, 629 (1993).

    CAS  PubMed  Google Scholar 

  26. DT Graves, DL Cochran, Mesenchymal cell growth factors, Crit Rev Oral Biol Med, 1, 17 (1990).

    CAS  PubMed  Google Scholar 

  27. DT Graves, DL Cochran, Periodontal regeneration with polypeptide growth factors, Curr Opin Periodontol, 178 (1994).

    Google Scholar 

  28. HN Antoniades, MW Hunkapiller, Human platelet-derived growth factor (PDGF): Amino terminal amino acid sequence, Science, 220, 963 (1983).

    Article  CAS  PubMed  Google Scholar 

  29. A Hammacher, U Hellman, A Johnson, A major part of PDGF purified from human platelets is a heterodimer of one A and one B chain, J Biol Chem, 263, 16493 (1988).

    CAS  PubMed  Google Scholar 

  30. R Sasisekharan, S Ernst, G Venkataraman, On the regulation of fibroblast growth factor activit by heparin-like glycosaminoglycans, Angiogenesis, 1, 45 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. SC Park, SH Oh, JH Lee, et al., Fabrication and characterization of nerve growth factor-immobilized asymmetrically porous PDOCL/Pluronic F127 nerve guide conduit, Tissue Eng Regen Med, 8, 192 (2011).

    Google Scholar 

  32. M Lyon, G Rushton, JT Gallagher, The interaction of the transforming growth factor-βs with heparin/heparan sulphate is isoform specific, J Biol Chem, 272, 18000 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. SM Lim, HJ Lee, SH Oh, et al., Novel fabrication of PCL porous beads for use as an injectable cell carrier system, J Biomed Mater Res B Appl Biomater, 90, 521 (2009).

    Article  PubMed  Google Scholar 

  34. PK Smith, AK Mallia, GT Harmanson, Colorimetric method for the assay of heparin content in immobilized heparin preparations, Anal. Biochem, 109, 466 (1980).

    Article  CAS  PubMed  Google Scholar 

  35. YH Shen, MS Shoichet, M Radisic, Vascular endothelial growth factor immobilized in collagen scaffold promotes penetration and proliferation of endothelial cells, Acta Biomater, 4, 477 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. SH Oh, SG Kang, SH Cho, et al., Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method, Biomaterials, 24, 4011 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. TL Hebert, X Wu, G Yu, et al., Culture effects of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) on cryopreserved human adipose-derived stromal/stem cell proliferation and adipogenesis, J Tissue Eng Regen Med, 3, 533 (2009).

    Article  Google Scholar 

  38. K Chieregato, S Castegnaro, D Madeo, Epidermal growth factor, basic fibroblast growth factor and platelet-derived growth factor-bb can substitute for fetal bovine serum and compete with human platelet-rich plasma in the ex vivo expansion of mesenchymal stromal cells derived from adipose tissue, Cytotherapy, 13, 933 (2011)

    Article  CAS  PubMed  Google Scholar 

  39. SM Lim, SH Jang, SH Oh, et al., Dual-growth-factor-releasing PCL scaffolds for chondrogenesis of adipose-tissue-derived mesenchymal stem cells, Adv Eng Mater, 12, B62 (2010).

    Article  Google Scholar 

  40. JW Oh, JY Choi, M Kim, et al., Fabrication and Characterization of Epithelial Scaffolds for Hair Follicle, Tissue Eng Regen Med, 9, 147 (2012).

    Article  CAS  Google Scholar 

  41. MA Caldwell, CN Svendsen, Heparin, but not other proteoglycans potentiates the mitogenic effects of FGF-2 on mesencephalic precursor cells, Exp Neurol, 152, 1 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. H Suga, T Shigeura, D Matsumoto, et al., Rapid expansion of human adipose-derived s tromal cells preserving multipotency, Cytotherapy, 9, 738 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. H Hauner, K Rohrig, T Petruschke, Effects of epidermal growth factor (EGF), platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) on human adipocyte development and function, Eur J Clin Invest, 25, 90 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Ho Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, J.G., Kim, T.H., Oh, S.H. et al. Fabrication and evaluation of growth factor-immobilized injectable microspheres for the soft tissue augmentation. Tissue Eng Regen Med 11 (Suppl 1), 8–15 (2014). https://doi.org/10.1007/s13770-013-1126-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-013-1126-5

Key words

Navigation