Skip to main content
Log in

Inorganic nanobiomaterial drug carriers for medicine

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Inorganic nanomedicine refers to the use of inorganic or hybrid nanomaterials and nanosized objects to achieve innovative medical breakthroughs for drug and gene discovery and delivery, discovery of biomarkers, and molecular diagnostics. It is widely believed that nanomaterials will be increasingly used in biomedical applications. However, before these novel materials can be safely applied in a clinical setting, their biocompatibility, biodistribution and biodegradation needs to be carefully assessed. There are a number of different classes of nanoparticles that hold promise for biomedical purposes. Here, we will focus on some of the most commonly studied nanomaterials: Ca-P ceramics, mesoporous silica particles, magnetic nanoparticles, and carbon nanotubes. In this review, we discuss the mechanism of cellular uptake of inorganic nanoparticles and the biodistribution depending on the physicochemical properties of the particles and in particular on their surface characteristics. Limitations and toxicity issues associated with inorganic nanoparticles in living organisms are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C Rong Synthesis, characterization and biological applications of inorganic nanomaterials. Thesis, Doctor of Philosophy in Chemistry, Hong Kong University (2006).

    Google Scholar 

  2. KK Jain, Nanomedicine: application of nanobiotechnology in medical practice, Med Princ Pract, 17, 89 (2008).

    PubMed  CAS  Google Scholar 

  3. A Gaur, AL Bhatia, Nanopharmaceuticals: an overview, Asian J Exp Sci, 22, 51 (2008).

    CAS  Google Scholar 

  4. W E Bawarski, E Chidlowsky, D J Bharali, et al., Emerging nanopharmaceuticals. Nanomed: Nanotech, Biol Med, 4, 273 (2008).

    CAS  Google Scholar 

  5. M Liong, J Lu, M Kovochich, et al., Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery, ACS Nano, 2, 889 (2008).

    PubMed  CAS  Google Scholar 

  6. J Cheon, J H Lee, Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc Chem Res, 41, 1630 (2008).

    PubMed  CAS  Google Scholar 

  7. P K Jain, X Huang, I H El-Sayed, et al., Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine, Acc Chem Res, 41, 1578 (2008).

    PubMed  CAS  Google Scholar 

  8. M Giersig, GB Khomutov, eds. Nanomaterials for application in medicine and biology (NATO science for peace and security series B: Physics and Biophysics), 1st ed. Springer, (2008).

    Google Scholar 

  9. M De, PS Ghosh, VM Rotello, Applications of nanoparticles in biology, Adv Mater, 20, 4225 (2008).

    CAS  Google Scholar 

  10. E Oberdorster, Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass, Environ Health Perspect, 112, 1058 (2004).

    PubMed  CAS  Google Scholar 

  11. G Oberdörster, E Oberdörster, J Oberdörster, Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles, Environ Health Perspect, 113, 823 (2005).

    PubMed  Google Scholar 

  12. J Kreuter, Nanoparticulate systems for brain delivery of drugs, Adv Drug Deliv Rev, 47, 65 (2001).

    PubMed  CAS  Google Scholar 

  13. JM Koziara, PR Lockman, D D Allen, et al., The blood-brain barrier and brain drug delivery, J Nanosci Nanotechnol, 6, 2712 (2006).

    PubMed  CAS  Google Scholar 

  14. SB Tiwari, MM Amiji, A review of nanocarrier-based CNS delivery systems, Curr Drug Deliv, 3, 219 (2006).

    PubMed  CAS  Google Scholar 

  15. A Nel, T Xia, L Mädler, et al., Toxic potential of materials at the nanolevel, Science 311, 622 (2006).

    PubMed  CAS  Google Scholar 

  16. A Elder, R Gelein, V Silva, et al., Translocation of inhaled ultrafine manganese oxide particles to the central nervous system, Environ Health Perspect, 114, 1172 (2006).

    PubMed  CAS  Google Scholar 

  17. J Kreuter, Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain, J Nanosci Nanotechnol, 4, 484 (2004).

    PubMed  CAS  Google Scholar 

  18. DB Warheit, How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization?, Toxicol Sci, 101, 183 (2008).

    PubMed  CAS  Google Scholar 

  19. SV Dorozhkin, M Epple, Angew Chem Int Ed, 17, 3130 (2002).

    Google Scholar 

  20. SV Dorozhkin, Bioceramics of calcium orthophosphates, Biomaterials, 31, 1465 (2010).

    PubMed  CAS  Google Scholar 

  21. JM Bouler, RZ LeGeros, G Daculsi, Biphasic calcium phosphates: influence of three synthesis parameters on the HA/β-TCP ratio, J Biomed Mater Res, 51, 680 (2000).

    PubMed  CAS  Google Scholar 

  22. I Gibson, S Best, W Bonfield, Chemical characterization of silicon-substituted hydroxyapatite, J Biomed Mater Res, 44, 422 (1999).

    PubMed  CAS  Google Scholar 

  23. M Vallet-Regi, D Arcos, Silicon substituted hydroxyapatites, A method to upgrade calcium phosphate based implants, J Mater Chem, 15, 1509 (2005).

    CAS  Google Scholar 

  24. GM Calori, E Mazza, M Colombo, et al., The use of bone-graft substitutes in large bone defects: any specific needs?, Injury, 42(Suppl 2), S56 (2011).

    PubMed  Google Scholar 

  25. M Murshed, D Harmey, J L Millan, et al., Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone, Genes Dev, 19, 1093 (2005).

    PubMed  CAS  Google Scholar 

  26. BD Boyan, Z Schwartz, Regenerative medicine: are calcium phosphate ceramics ‘smart’ biomaterials?, Nat Rev Rheumatol, 7, 8 (2011).

    PubMed  CAS  Google Scholar 

  27. H Yuan, H Fernandes, P Habibovic, et al., ‘Smart’ biomaterials and osteoinductivity, Nat Rev Rheumatol, 7, c1 (author reply c2) (2011).

    PubMed  Google Scholar 

  28. W Paul, C P Sharma, Ceramic drug delivery: a perspective, J Biomater Appl, 17, 253 (2003).

    PubMed  CAS  Google Scholar 

  29. JE Fleming Jr, CN Cornell, GF Muschler, Bone cells and matrices in orthopedic tissue engineering, Orthop Clin North Am, 31, 357 (2000).

    PubMed  Google Scholar 

  30. HR Ramay, M Zhang, Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering, Biomaterials, 25, 5171 (2004).

    PubMed  CAS  Google Scholar 

  31. S Koutsopoulos, Kinetic study on the crystal growth of hydroxyapatite, Langmuir, 17, 8092 (2001).

    CAS  Google Scholar 

  32. S Koutsopoulos, E Dalas, The crystallization of hydroxyapatite in the presence of lysine, J Colloid Interface Sci, 231, 207 (2000).

    PubMed  CAS  Google Scholar 

  33. S Koutsopoulos, Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods, J Biomed Mater Res, 62, 600 (2002).

    PubMed  CAS  Google Scholar 

  34. S Koutsopoulos, PC Paschalakis, E Dalas, The calcification of elastin in-vitro, Langmuir, 10, 2423 (1994).

    CAS  Google Scholar 

  35. S Koutsopoulos, E Dalas, The calcification of fibrin in vitro, J Cryst Growth, 216, 450 (2000).

    CAS  Google Scholar 

  36. Y Shinto, A Uchida, F Korkusuz, et al., Calcium hydroxyapatite ceramic used as a delivery system for antibiotics, J Bone Joint Surg Br, 74, 600 (1992).

    PubMed  CAS  Google Scholar 

  37. KL Low, SH Tan, SH Zein, et al., Calcium phosphate-based composites as injectable bone substitute materials, J Biomed Mater Res B Appl Biomater, 94, 273 (2010).

    PubMed  Google Scholar 

  38. IH Lieberman, D Togawa, MM Kayanja, Vertebroplasty and kyphoplasty: filler materials, Spine J, 5, 305S (2005).

    PubMed  Google Scholar 

  39. P Laffargue, P Fialdes, P Frayssinet, et al., Adsorption and release of insulin-like growth factor-I on porous tricalcium phosphate implant, J Biomed Mater Res, 49, 415 (2000).

    PubMed  CAS  Google Scholar 

  40. O Suzuki, Octacalcium phosphate: osteoconductivity and crystal chemistry, Acta Biomater, 6, 3379 (2010).

    PubMed  CAS  Google Scholar 

  41. T Anada, T Kumagai, Y Honda, et al., Dose-dependent osteogenic effect of octacalcium phosphate on mouse bone marrow stromal cells, Tissue Eng Part A, 14, 965 (2008).

    PubMed  CAS  Google Scholar 

  42. I Roy, S Mitra, A Maitra, et al., Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery, Int J Pharm, 250, 25 (2003).

    PubMed  CAS  Google Scholar 

  43. II Slowing, JL Vivero-Escoto, CW Wu, et al., Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers, Adv Drug Deliv Rev, 60, 1278 (2008).

    PubMed  CAS  Google Scholar 

  44. F Tang, L Li, D Chen, Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery, Adv Mater, 24, 1504 (2012).

    PubMed  CAS  Google Scholar 

  45. S Kwon, RK Singh, RA Perez, et al., Silica-based mesoporous nanoparticles for controlled drug delivery, J Tissue Eng, 4, 2041731413503357 (2013).

    PubMed  Google Scholar 

  46. JL Vivero-Escoto, II Slowing, BG Trewyn, VS Lin, Mesoporous silica nanoparticles for intracellular controlled drug delivery, Small, 6(18), 1952 (2010).

    PubMed  CAS  Google Scholar 

  47. Z Li, JC Barnes, A Bosoy, et al., Mesoporous silica nanoparticles in biomedical applications, Chem Soc Rev, 41, 2590 (2012).

    PubMed  CAS  Google Scholar 

  48. BG Trewyn, S Giri, II Slowing, et al., Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems, Chem Commun, 31, 3236 (2007).

    Google Scholar 

  49. RK Singh, TH Kim, JJ Kim, et al., Mesoporous silica tubular nanocarriers for the delivery of therapeutic molecules, RSC Adv, 3, 8692 (2013).

    CAS  Google Scholar 

  50. H Meng, M Xue, T Xia, et al., Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model, ACS Nano, 5, 4131 (2011).

    PubMed  CAS  Google Scholar 

  51. YS Lin, CL Haynes, Synthesis and characterization of biocompatible and size-tunable multifunctional porous silica nanoparticles, Chem Mater, 21, 3979 (2009).

    CAS  Google Scholar 

  52. X He, H Nie, K Wang, et al., In vivo study of biodistribution and urinary excretion of surface modified silica nanoparticles, Anal Chem, 80, 9597 (2008).

    PubMed  CAS  Google Scholar 

  53. MH Lim, A Stein, Comparative studies of grafting and direct syntheses of inorganic-organic hybrid mesoporous materials, Chem Mater, 11, 3285 (1999).

    CAS  Google Scholar 

  54. X Huang, X Teng, D Chen, et al., The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function, Biomaterials, 31, 438 (2010).

    PubMed  CAS  Google Scholar 

  55. H Vallhov, S Gabrielsson, M Stromme, et al., Mesoporous silica particles induce size dependent effects on human dendritic cells, Nano Lett, 7, 3576 (2007).

    PubMed  CAS  Google Scholar 

  56. SP Hudson, RF Padera, R Langer, et al., The biocompatibility of mesoporous silicates, Biomaterials, 29, 4045 (2008).

    PubMed  CAS  Google Scholar 

  57. TH Chung, SH Wu, M Yao, et al., The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells, Biomaterials, 28, 2959 (2007).

    PubMed  CAS  Google Scholar 

  58. Z Tao, BB Toms, J Goodisman, et al., Mesoporosity and functional group dependent endocytosis and cytotoxicity of silica nanomaterials, Chem Res Toxicol, 22, 1869 (2009).

    PubMed  CAS  Google Scholar 

  59. T Yu, K Greish, LD McGill, et al., Influence of geometry, porosity, and surface characteristics of silica nanoparticles on acute toxicity: their vasculature effect and tolerance threshold, ACS Nano, 6, 2289 (2012).

    PubMed  CAS  Google Scholar 

  60. T Yu, A Malugin, H Ghandehari, impact of silica nanoparticle design on cellular toxicity and hemolytic activity, ACS Nano, 5, 5717 (2011).

    PubMed  CAS  Google Scholar 

  61. HL Herd, A Malugin, H Ghandehari, Silica nanoconstruct cellular toleration threshold in vitro, J Controlled Release, 153, 40 (2011).

    CAS  Google Scholar 

  62. AJ Nan, X Bai, SJ Son, et al., H Ghandehari Cellular uptake and cytotoxicity of silica nanotubes, Nano Lett, 8, 2150 (2008).

    PubMed  CAS  Google Scholar 

  63. Y Zhao, X Sun, G Zhang, et al., Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects, ACS Nano, 5, 1366 (2011).

    PubMed  CAS  Google Scholar 

  64. F Lu, SH Wu, Y Hung, et al., Size effect on cell uptake in wellsuspended, uniform mesoporous silica nanoparticles, Small, 5, 1408 (2009).

    CAS  Google Scholar 

  65. E Witasp, N Kupferschmidt, L Bengtsson, et al., Efficient internalization of mesoporous silica particles of different sizes by primary human macrophages without impairment of macrophage clearance of apoptotic or antibody-opsonized target cells, Toxicol Appl Pharmacol, 239, 306 (2009).

    PubMed  CAS  Google Scholar 

  66. SH Wu, YS Lin, Y Hung, et al., Multifunctional mesoporous silica nanoparticles for intracellular labeling and animal magnetic resonance imaging studies, Chembiochem 9, 53 (2008).

    PubMed  CAS  Google Scholar 

  67. T Xia, M Kovochich, M Liong, et al., Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA construct, ACS Nano, 3, 3273 (2009).

    PubMed  CAS  Google Scholar 

  68. AM Chen, M Zhang, D Wei, et al., Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells, Small, 5, 2673 (2009).

    PubMed  CAS  Google Scholar 

  69. Y Zhao, BG Trewyn, II Slowing, et al., Mesoporous silica nanoparticle-based double drug delivery system for glucoseresponsive controlled release of insulin and cyclic AMP, J Am Chem Soc, 131, 8398 (2009).

    PubMed  CAS  Google Scholar 

  70. KC Souza, JD Ardisson, EM Sousa, Study of mesoporous silica/magnetite systems in drug controlled release, J Mater Sci Mater Med, 20, 507 (2009).

    PubMed  CAS  Google Scholar 

  71. J Lu, M Liong, Z Li, et al., Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals, Small, 6, 1794 (2010).

    CAS  Google Scholar 

  72. X Li, QR Xie, J Zhang, et al., The packaging of siRNA within the mesoporous structure of silica nanoparticles, Biomaterials, 32, 9546 (2011).

    PubMed  CAS  Google Scholar 

  73. CS Kumar, F Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery, Adv Drug Deliv Rev, 63, 789 (2011).

    PubMed  CAS  Google Scholar 

  74. JR McCarthy, R weissleder, Multifunctional magnetic nanoparticles for target imaging and therapy, Adv Drug Deliv Rev, 60, 1241 (2008).

    PubMed  CAS  Google Scholar 

  75. J Kim, HS Kim, N Lee, et al., Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery, Angew Chem Int Ed, 47, 8438 (2008).

    CAS  Google Scholar 

  76. K Varadan, L Chen, J Xie, J Abraham, eds. Nanomedicine: design and applications of magnetic nanomaterials, nanosensors and nanosystems, John Wiley and Sons, pp 129–173 (2008).

    Google Scholar 

  77. NA Frey, S. Peng, K Cheng, S Sun, Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev, 38, 2532 (2009).

    PubMed  CAS  Google Scholar 

  78. AK Gupta, M Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 26, 3995 (2005).

    PubMed  CAS  Google Scholar 

  79. C Xu, S Sun, Superparamagnetic nanoparticles as targeted probes for diagnostic and therapeutic applications, Dalton Trans, 29, 5583 (2009).

    PubMed  Google Scholar 

  80. C Alexiou, W Arnold, RJ Klein, et al., Locoregional cancer treatment with magnetic drug targeting, Cancer Res, 60, 6641 (2000).

    PubMed  CAS  Google Scholar 

  81. JW Bulte, Y Hoekstra, RL Kamman, et al., Specific MR imaging of human lymphocytes by monoclonal antibodyguided dextran-magnetite particles, Magn Reson Med, 25, 148 (1992).

    PubMed  CAS  Google Scholar 

  82. QA Pankhurst, J Connolly, SK Jones, et al., Applications of magnetic nanoparticles in biomedicine, J Phys D Appl Phys, 36, R167 (2003).

    CAS  Google Scholar 

  83. R Weissleder, DD Stark, BL Engelstad, et al., Superparamagnetic iron oxide: pharmacokinetics and toxicity, Americ J Roentgenology, 152, 167 (1989).

    CAS  Google Scholar 

  84. J Lee, T Isobe, M Senna, Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH, J Colloid Interface Sci, 177, 490 (1996).

    CAS  Google Scholar 

  85. C Sun, JS Lee, M Zhang, Magnetic nanoparticles in MR imaging and drug delivery, Adv Drug Deliv Rev, 60, 1252 (2008).

    PubMed  CAS  Google Scholar 

  86. P Reimer, T Balzer, Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications, Eur Radiol, 13, 1266 (2003).

    PubMed  Google Scholar 

  87. C Gruttner, J Teller, New types of silica-fortified magnetic nanoparticles as tools for molecular biology applications, J Magn Magn Mater, 194, 8 (1999).

    CAS  Google Scholar 

  88. C Berry, ASG Curtis, Functionalization of magnetic nanoparticles for applications in biomedicine, J Phys D Appl Phys, 36, R198 (2003).

    CAS  Google Scholar 

  89. M G Harisinghani, R Weissleder, Sensitive, noninvasive detection of lymph node metastases, PLoS Med, 1, e66 (2004).

    PubMed  Google Scholar 

  90. O Clement, R Guimaraes, E de Kerviler, et al., Magnetic resonance lymphography. Enhancement patterns using superparamagnetic nanoparticles, Invest Radiol, 29, S226 (1994).

    PubMed  Google Scholar 

  91. MF Bellin, L Lebleu, JB Meric, Evaluation of retroperitoneal and pelvic lymph node metastases with MRI and MR lymphangiography, Abdom Imaging, 28, 155 (2003).

    Google Scholar 

  92. MG Harisinghani, J Barentsz, PF Hahn, et al., Noninvasive detection of clinically occult lymph-node metastases in prostate cancer, N Engl J Med, 348, 2491 (2003).

    PubMed  Google Scholar 

  93. J Gao, H Gu, B Xu, Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications, Acc Chem Res, 42, 1097 (2009).

    PubMed  CAS  Google Scholar 

  94. YL Koo, R Agayan, MA Philbert, et al., Photonic explorers based on multifunctional nanoplatforms: In vitro and in vivo biomedical applications, New Appr Biomed Spect, 963, 200 (2007).

    CAS  Google Scholar 

  95. SS Banerjee, DH Chen, A multifunctional magnetic nanocarrier bearing fluorescent dye for targeted drug delivery by enhanced two-photon triggered release, Nanotechnology, 20, 185103 (2009).

    PubMed  Google Scholar 

  96. MK Yu, YY Jeong, J Park, et al., Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo, Angew Chem Int Ed, 47, 5362 (2008).

    CAS  Google Scholar 

  97. P Reimer, B Tombach, Hepatic MRI with SPIO: detection and characterization of focal liver lesions, Eur Radiol, 8, 1198 (1998).

    PubMed  CAS  Google Scholar 

  98. C Sun, O Veiseh, J Gunn, et al., In vivo MRI detection of gliomas by chlorotoxin-conjugated superparamagnetic nanoprobes, Small, 4, 372 (2008).

    PubMed  CAS  Google Scholar 

  99. A Toma, E Otsuji, Y Kuriu, et al., Monoclonal antibody A7-superparamagnetic iron oxide as contrast agent of MR imaging of rectal carcinoma, Br J Cancer, 93, 131 (2005).

    PubMed  CAS  Google Scholar 

  100. MA Funovics, B Kapeller, C Hoeller, et al., MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents, Magn Reson Imaging, 22, 843 (2004).

    PubMed  CAS  Google Scholar 

  101. SD Weitman, RH Lark, LR Coney, et al., Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues, Cancer Res, 52, 3396 (1992).

    PubMed  CAS  Google Scholar 

  102. F Ross, PK Chaudhuri, M Ratnam, Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines, Physiologic and clinical implications, Cancer, 73, 2432 (1994).

    PubMed  CAS  Google Scholar 

  103. K Overgaard, J Overgaard, Investigations on the possibility of a thermic tumour therapy. I. Short-wave treatment of a transplanted isologous mouse mammary carcinoma, Eur J Cancer, 8, 65 (1972).

    PubMed  CAS  Google Scholar 

  104. M Johannsen, U Gneveckow, K Taymoorian, et al., Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial, Int J Hyperthermia, 23, 315 (2007).

    PubMed  CAS  Google Scholar 

  105. E Duguet, S Vasseur, S Mornet, et al., Magnetic nanoparticles and their applications in medicine, Nanomedicine, 1, 157 (2006).

    PubMed  CAS  Google Scholar 

  106. US Shin, IK Yoon, GU Lee, et al., Carbon Nanotubes in Nanocomposites and Hybrids with Hydroxyapatite for Bone Replacements, J Tissue Eng, 2, 674287 (2011).

    Google Scholar 

  107. G Jia, H Wang, L Yan, et al., Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene, Environ Sci Technol, 39, 1378 (2005).

    PubMed  CAS  Google Scholar 

  108. M De Nicola, S Bellucci, E Traversa, et al., Carbon nanotubes on Jurkat cells: effects on cell viability and plasma membrane potential, J Phys Condens Matter, 20, 474204 (2008).

    Google Scholar 

  109. D Zhang, C Yi, J Zhang, et al., The effects of carbon nanotubes on the proliferation and differentiation of primary osteoblasts, Nanotechnology, 18, 475102 (2007).

    Google Scholar 

  110. CA Poland, R Duffin, I Kinloch, et al., Carbon nanotubes introduced into the abdominal cavity of mice show asbestoslike pathogenicity in a pilot study, Nat Nanotechnol, 3, 423 (2008).

    PubMed  CAS  Google Scholar 

  111. A Takagi, A Hirose, T Nishimura, et al., Induction of mesothelioma in p53+/mouse by intraperitoneal application of multi-wall carbon nanotube, J Toxicol Sci, 33, 105 (2008).

    PubMed  CAS  Google Scholar 

  112. J Muller, M Delos, N Panin, et al., Absence of carcinogenic response to multiwall carbon nanotubes in 2-year bioassay in the peritoneal cavity of the rat, Toxicol Sci, 110, 442 (2009).

    PubMed  CAS  Google Scholar 

  113. JY Hwang, US Shin, WC Jang, et al., Biofunctionalized carbon nanotubes in neural regeneration: a mini review, Nanoscale, 5, 487 (2013).

    PubMed  CAS  Google Scholar 

  114. NW Kam, M O’Connell, JA Wisdom, et al., Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction, Proc Natl Acad Sci U S A, 102, 11600 (2005).

    PubMed  CAS  Google Scholar 

  115. JY Hwang, US Shin, WC Jang, et al., Biofunctionalized carbon nanotubes in neural regeneration: a mini-reivew, Nanoscale, 5, 487 (2013).

    PubMed  CAS  Google Scholar 

  116. S Fiorito, A Serafino, F Andreola, et al., Toxicity and biocompatibility of carbon nanoparticles, J Nanosci Nanotechnol, 6, 591 (2006).

    PubMed  CAS  Google Scholar 

  117. CA Poland, R Duffin, I Kinloch, et al., Carbon nanotubes introduced into the abdominal cavity of mice show asbestoslike pathogenicity in a pilot study, Nat Nanotechnol, 3, 423 (2008).

    PubMed  CAS  Google Scholar 

  118. A Takagi, A Hirose, T Nishimura, et al., Induction of mesothelioma in p53+/mouse by intraperitoneal application of multi-wall carbon nanotubes, J Toxicol Sci, 33, 105 (2008).

    PubMed  CAS  Google Scholar 

  119. M Crosera, M Bovenzi, G Maina, et al., Nanoparticle dermal absorption and toxicity: a review of the literature, Int Arch Occup Environ Health, 82, 1043 (2009).

    PubMed  CAS  Google Scholar 

  120. A Helland, P Wick, A Koehler, et al., Reviewing the environmental and human health knowledge base of carbon nanotubes, Environ Health Perspect, 115, 1125 (2007).

    PubMed  CAS  Google Scholar 

  121. LM Sargent, AA Shvedova, AF Hubbs, et al., Induction of aneuploidy by single-walled carbon nanotubes, Environ Mol Mutagen, 50, 708 (2009).

    PubMed  CAS  Google Scholar 

  122. VE Kagan, YY Tyurina, VA Tyurin, et al., Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron, Toxicol Lett, 165, 88 (2006).

    PubMed  CAS  Google Scholar 

  123. K Pulskamp, S Diabate, HF Krug, Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants, Toxicol Lett, 168, 58 (2007).

    PubMed  CAS  Google Scholar 

  124. S Hirano, S Kanno, A Furuyama, Multi-walled carbon nanotubes injure the plasma membrane of macrophages, Toxicol Appl Pharmacol 232, 244 (2008).

    PubMed  CAS  Google Scholar 

  125. T Thurnherr, D Su, L Diener, et al., Comprehensive evaluation of in vitro toxicity of three large-scale produced carbon nanotubes on human Jurkat T cells and a comparison to crocidolite asbestos, Nanotoxicology, 3, 319 (2009).

    CAS  Google Scholar 

  126. MD Nicola, S Bellucci, E Traversa, et al., Carbon nanotubes on Jurkat cells: effects on cell viability and plasma membrane potential, J Phys Condens Matter, 474204 (2008).

    Google Scholar 

  127. O Zeni, R Palumbo, R Bernini, et al., Cytotoxicity investigation on cultured human blood cells treated with single-wall carbon nanotubes, Sensors, 8, 488 (2008).

    CAS  Google Scholar 

  128. C Salvador-Morales, E Flahaut, E Sim, et al., Complement activation and protein adsorption by carbon nanotubes, Mol Immunol, 43, 193 (2006).

    PubMed  CAS  Google Scholar 

  129. CC Chou, HY Hsiao, QS Hong, et al., Single-walled carbon nanotubes can induce pulmonary injury in mouse model, Nano Lett, 8, 437 (2008).

    PubMed  CAS  Google Scholar 

  130. UC Nygaard, JS Hansen, M Samuelsen, et al., Single-walled and multi-walled carbon nanotubes promote allergic immune responses in mice, Toxicol Sci, 109, 113 (2009).

    PubMed  CAS  Google Scholar 

  131. EJ Park, WS Cho, J Jeong, et al., Pro-inflammatory and potential allergic responses resulting from B cell activation in mice treated with multi-walled carbon nanotubes by intratracheal instillation, Toxicology, 259, 113 (2009).

    PubMed  CAS  Google Scholar 

  132. LA Mitchell, FT Lauer, SW Burchiel, et al., Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice, Nat Nanotechnol, 4, 451 (2009).

    PubMed  CAS  Google Scholar 

  133. BL Allen, PD Kichambare, P Gou, et al., Biodegradation of single-walled carbon nanotubes through enzymatic catalysis, Nano Lett, 8, 3899 (2008).

    PubMed  CAS  Google Scholar 

  134. BL Allen, GP Kotchey, Y Chen, et al., Mechanistic investigations of horseradish peroxidase-catalyzed degradation of single-walled carbon nanotubes, J Am Chem Soc, 131, 17194 (2009).

    PubMed  CAS  Google Scholar 

  135. VE Kagan, NV Konduru, W Feng, et al., Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation, Nat Nanotechnol, 5, 354 (2010).

    PubMed  CAS  Google Scholar 

  136. D Pantarotto, JP Briand, M Prato, et al., Translocation of bioactive peptides across cell membranes by carbon nanotubes, Chem Commun, 1, 16 (2004).

    Google Scholar 

  137. CM Sayes, F Liang, JL Hudson, et al., Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro, Toxicol Lett, 161, 135 (2006).

    PubMed  CAS  Google Scholar 

  138. NW Shi Kam, TC Jessop, PA Wender, et al., Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells, J Am Chem Soc, 126, 6850 (2004).

    PubMed  Google Scholar 

  139. Z Ji, D Zhang, L Li, et al., The hepatotoxicity of multi-walled carbon nanotubes in mice, Nanotechnology, 20, 445101 (2009).

    PubMed  Google Scholar 

  140. Y Sato, A Yokoyama, K Shibata, et al., Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo, Mol Biosyst 1, 176 (2005).

    PubMed  CAS  Google Scholar 

  141. A De la Zerda, C Zavaleta, S Keren, et al., Carbon nanotubes as photoacoustic molecular imaging agents in living mice, Nat Nanotechnol, 3, 557 (2008).

    PubMed  Google Scholar 

  142. ML Schipper, N Nakayama-Ratchford, CR Davis, et al., A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice, Nat Nanotechnol, 3, 216 (2008).

    PubMed  CAS  Google Scholar 

  143. H Dumortier, S Lacotte, G Pastorin, et al., Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells, Nano Lett, 6, 1522 (2006).

    PubMed  CAS  Google Scholar 

  144. H Zhou, Q Mu, N Gao, et al., A nano-combinatorial library strategy for the discovery of nanotubes with reduced proteinbinding, cytotoxicity, and immune response, Nano Lett, 8, 859 (2008).

    CAS  Google Scholar 

  145. NV Konduru, YY Tyurina, W Feng, et al., Phosphatidylserine targets single-walled carbon nanotubes to professional phagocytes in vitro and in vivo, PLoS ONE, 4, e4398 (2009).

    PubMed  Google Scholar 

  146. MA Herrero, FM Toma, KT Al-Jamal, et al., Synthesis and characterization of a carbon nanotube-dendron series for efficient siRNA delivery, J Am Chem Soc, 131, 9843 (2009).

    PubMed  CAS  Google Scholar 

  147. N Narita, Y Kobayashi, H Nakamura, et al., Multiwalled carbon nanotubes specifically inhibit osteoclast differentiation and function, Nano Lett, 9, 1406 (2009).

    PubMed  CAS  Google Scholar 

  148. Z Liu, K Chen, C Davis, et al., Drug delivery with carbon nanotubes for in vivo cancer treatment, Cancer Res 68, 6652 (2008).

    PubMed  CAS  Google Scholar 

  149. J Wilson, GH Pigott, FJ Schoen, et al., Toxicology and biocompatibility of bioglasses, J Biomed Mater Res, 15, 805 (1981).

    PubMed  CAS  Google Scholar 

  150. N Patel, SM Best, W Bonfield, et al., A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules, J Mater Sci Mater Med, 13, 1199 (2002).

    PubMed  CAS  Google Scholar 

  151. Y Sun, Y Chen, L Tian, et al., Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb, Er nanocrystals, Nanotechnol, 18, 275609 (2007).

    Google Scholar 

  152. AM Smith, X Gao, S Nie, Quantum dot nanocrystals for in vivo molecular and cellular imaging, Photochem Photobiol, 80, 377 (2004).

    PubMed  CAS  Google Scholar 

  153. T Jamieson, R Bakhshi, D Petrova, et al., Biological applications of quantum dots, Biomaterials, 28, 4717 (2007).

    PubMed  CAS  Google Scholar 

  154. MA Walling, JA Novak, JRE Shepard, Quantum dots for live cell and in vivo imaging, Int J Mol Sci, 10, 441 (2009).

    PubMed  CAS  Google Scholar 

  155. A Smith, G Ruan, M Rhyner, et al., Engineering luminescent quantum dots for in vivo molecular and cellular Imaging, Annu Biomed Eng, 34, 3 (2006).

    Google Scholar 

  156. DA Giljohann, DS Seferos, WL Daniel, et al., Gold nanoparticles for biology and medicine, Angew Chem Int Ed, 49, 3280 (2010).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hae-Won Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R.K., Kim, HW. Inorganic nanobiomaterial drug carriers for medicine. Tissue Eng Regen Med 10, 296–309 (2013). https://doi.org/10.1007/s13770-013-1092-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-013-1092-y

Key words

Navigation