Skip to main content
Log in

Mechanistic removal of environmental contaminants using biogenic nano-materials

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Materials of nano-dimensions are gaining popularity due to their inherent properties such as high reactivity, mobility and surface area. Environmental bioremediation by employing microbial platforms is one of the most rapidly growing areas of nano-biotechnology. Nanoparticles synthesized using biological entities such as yeast, bacteria, fungi, algae and plants are referred to as biogenic nanoparticles. Owing to their nontoxicity, biologically synthesized nanoparticles have emerged as a sustainable alternative to chemically synthesized nanoparticles. In the past few years, several biogenic nanoparticles have been developed for potential application in medicine and environmental remediation. Biogenic nanoparticles such as biogenic manganese oxide (BioMnOx), biogenic nano-magnets, bio-palladium nanocrystals and biogenic iron species have proven to be effective for the removal of several micro-pollutants, heavy metals, recalcitrant pollutants and halogenated compounds. Nano-bioremediation could emerge as a better, safer, ecofriendly and cost-effective technology, which can greatly influence the domain of environmental remediation in the long run. This study reviews the synthesis, classification and applications of microbial nanoparticles for environmental bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Reprinted from Zhou et al. (2015), Copyright (2015), with permission from Elsevier

Fig. 5
Fig. 6

Reprinted with permission from Das et al. (2009), Copyright (2009) American Chemical Society

Fig. 7

Reprinted from Wang et al. 2017a, b, Copyright (2017) with permission from Elsevier

Similar content being viewed by others

References

  • Abboud Y, Saffaj T, Chagraoui A, El Bouari A, Brouzi K, Tanane O, Ihssane B (2014) Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci 4(5):571–576

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete Thermomonospora sp. Langmuir 19(8):3550–3553

    Article  CAS  Google Scholar 

  • Anghel L, Balasoiu M, Ishchenko LA, Stolyar SV, Kurkin TS, Rogachev AV, Kuklin AI, Kovalev YS, Raikher YL, Iskhakov RS, Duca G (2012) Characterization of bio-synthesized nanoparticles produced by Klebsiella oxytoca. J Phys 351(1):012005

    Google Scholar 

  • Annamalai J, Nallamuthu T (2015) Characterization of biosynthesized gold nanoparticles from aqueous extract of Chlorella vulgaris and their anti-pathogenic properties. Appl Nanosci 5(5):603–607

    Article  CAS  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Shakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties. Langmuir 31(42):11605–11612

    Article  CAS  Google Scholar 

  • Azizi S, Namvar F, Mahdavi M, Ahmad MB, Mohamad R (2013) Biosynthesis of silver nanoparticles using brown marine macroalga, Sargassum muticum aqueous extract. Materials 6(12):5942–5950

    Article  CAS  Google Scholar 

  • Azizi S, Ahmad MB, Namvar F, Mohamad R (2014) Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater Lett 116:275–277

    Article  CAS  Google Scholar 

  • Bai Y, Yang T, Liang J, Qu J (2016) The role of biogenic Fe-Mn oxides formed in situ for arsenic oxidation and adsorption in aquatic ecosystems. Water Res 98:119–127

    Article  CAS  Google Scholar 

  • Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces 68(1):88–92

    Article  CAS  Google Scholar 

  • Barwal I, Ranjan P, Kateriya S, Yadav SC (2011) Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles. J Nanobiotechnol 9(1):56

    Article  CAS  Google Scholar 

  • Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43(5):1164–1170

    Article  CAS  Google Scholar 

  • Brayner R, Coradin T, Beaunier P, Grenèche JM, Djediat C, Yéprémian C, Fiévet F (2012) Intracellular biosynthesis of superparamagnetic 2-lines ferri-hydrite nanoparticles using Euglena gracilis microalgae. Colloids Surf B Biointerfaces 93:20–23

    Article  CAS  Google Scholar 

  • Busto Y, Cabrera X, Tack FMG, Verloo MG (2011) Potential of thermal treatment for decontamination of mercury containing wastes from chlor-alkali industry. J Hazard Mater 186(1):114–118

    Article  CAS  Google Scholar 

  • Castro L, Blázquez ML, González F, Muñoz JA, Ballester A (2018) Heavy metal adsorption using biogenic iron compounds. Hydrometallurgy 179:44–51

    Article  CAS  Google Scholar 

  • Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B Biointerfaces 83(1):42–48

    Article  CAS  Google Scholar 

  • Chauhan A, Zubair S, Tufail S, Sherwani A, Sajid M, Raman SC, Azam A, Owais M (2011) Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer. Int J Nanomed 6:2305

    CAS  Google Scholar 

  • Cuevas R, Durán N, Diez MC, Tortella GR, Rubilar O (2015) Extracellular biosynthesis of copper and copper oxide nanoparticles by Stereum hirsutum, a native white-rot fungus from chilean forests. J Nanomater 16(1):57

    Google Scholar 

  • Dahoumane SA, Yéprémian C, Djédiat C, Couté A, Fiévet F, Coradin T, Brayner R (2016) Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga. J Nanopart Res 18(3):79

    Article  CAS  Google Scholar 

  • Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25(14):8192–8199

    Article  CAS  Google Scholar 

  • Davis AS, Prakash P, Thamaraiselvi K (2017) Nanobioremediation technologies for sustainable environment. In: Prashanthi M, Sundaram R, Jeyaseelan A, Kaliannan T (eds) Bioremediation and sustainable technologies for cleaner environment. Springer, Cham, pp 13–33

    Chapter  Google Scholar 

  • Davolos D, Pietrangeli B (2013) A molecular study on bacterial resistance to arsenic-toxicity in surface and underground waters of Latium (Italy). Ecotoxicol Environ Saf 96:1–9

    Article  CAS  Google Scholar 

  • De Corte S, Sabbe T, Hennebel T, Vanhaecke L, De Gusseme B, Verstraete W, Boon N (2012) Doping of biogenic Pd catalysts with Au enables dechlorination of diclofenac at environmental conditions. Water Res 46(8):2718–2726

    Article  CAS  Google Scholar 

  • Dermont G, Bergeron M, Mercier G, Richer-Laflèche M (2008) Soil washing for metal removal: a review of physical/chemical technologies and field applications. J Hazard Mater 152(1):1–31

    Article  CAS  Google Scholar 

  • Devi JS, Bhimba BV, Peter DM (2013) Production of biogenic silver nanoparticles using Sargassum longifolium and its applications. Indian J Geo-Mar Sci 42(1):125–130

    CAS  Google Scholar 

  • Dhillon GS, Kaur S, Verma M, Brar SK (2012) Biopolymer-based nanomaterials: potential applications in bioremediation of contaminated wastewaters and soils. Compr Anal Chem 59:91–129

    Article  CAS  Google Scholar 

  • Feynman R (1959) There’s plenty of Room at the Bottom. California Institute of Technology. Caltech Eng Sci 23:22–36

    Google Scholar 

  • Forrez I, Carballa M, Fink G, Wick A, Hennebel T, Vanhaecke L, Ternes T, Boon N, Verstraete W (2011) Biogenic metals for the oxidative and reductive removal of pharmaceuticals, biocides and iodinated contrast media in a polishing membrane bioreactor. Water Res 45(4):1763–1773

    Article  CAS  Google Scholar 

  • Furgal KM, Meyer RL, Bester K (2014) Removing selected steroid hormones, biocides and pharmaceuticals from water by means of biogenic manganese oxide nanoparticles in situ at ppb levels. Chemosphere 136:321–326

    Article  CAS  Google Scholar 

  • Gade AK, Bonde P, Ingle AP, Marcato PD, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2(3):243–247

    Article  Google Scholar 

  • Ghodake G, Lee DS (2011) Biological synthesis of gold nanoparticles using the aqueous extract of the brown algae Laminaria japonica. J Nanoelectron Optoelectron 6(3):268–271

    Article  CAS  Google Scholar 

  • Gopal JV, Thenmozhi M, Kannabiran K, Rajakumar G, Velayutham K, Rahuman AA (2013) Actinobacteria mediated synthesis of gold nanoparticles using Streptomyces sp. VITDDK3 and its antifungal activity. Mater Lett 93:360–362

    Article  CAS  Google Scholar 

  • Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SRK, Muniyandi J, Eom SH (2009) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B Biointerfaces 74(1):328–335

    Article  CAS  Google Scholar 

  • He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61(18):3984–3987

    Article  CAS  Google Scholar 

  • Hennebel T, De Gusseme B, Boon N, Verstraete W (2009a) Biogenic metals in advanced water treatment. Trends Biotechnol 27(2):90–98

    Article  CAS  Google Scholar 

  • Hennebel T, Verhagen P, Simoen H, Gusseme B De, Vlaeminck SE, Boon N, Verstraete W (2009b) Remediation of trichloroethylene by bio-precipitated and encapsulated palladium nanoparticles in a fixed bed reactor. Chemosphere 76(9):1221–1225

    Article  CAS  Google Scholar 

  • Hosseinkhani B, Nuzzo A, Zanaroli G, Fava F, Boon N (2015) Assessment of catalytic dechlorination activity of suspended and immobilized bio-Pd NPs in different marine conditions. Appl Catal B 168:62–67

    Article  CAS  Google Scholar 

  • Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A Mol Biomol Spectrosc 67(3–4):1003–1006

    Article  CAS  Google Scholar 

  • Ingle A, Rai M, Gade A, Bawaskar M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11(8):2079

    Article  CAS  Google Scholar 

  • Iverson NM, Barone PW, Shandell M, Trudel LJ, Sen S, Sen F, Ivanov V, Atolia E, Farias E, McNicholas TP, Reuel N, Parry N, Wogan GN, Strano MS (2013) In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat Nanotechnol 8(11):873

    Article  CAS  Google Scholar 

  • Jain D, Kachhwaha S, Jain R, Srivastava G, Kothari SL (2010) Novel microbial route to synthesize silver nanoparticles using spore crystal mixture of Bacillus thuringiensis. Indian J Exp Biol 48(11):1152–1156

    CAS  Google Scholar 

  • Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3(2):635–641

    Article  CAS  Google Scholar 

  • Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Rao KB (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A Mol Biomol Spectrosc 90:78–84

    Article  CAS  Google Scholar 

  • Jencarova J, Luptakova A (2012) The elimination of heavy metal ions from waters by biogenic iron sulphides. Chem Eng Trans 28:205–210

    Google Scholar 

  • Kalishwaralal K, Deepak V, Pandian SRK, Kottaisamy M, Barathmanikanth S, Kartikeyan B, Gurunathan S (2010) Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B Biointerfaces 77(2):257–262

    Article  CAS  Google Scholar 

  • Kathiraven T, Sundaramanickam A, Shanmugam N, Balasubramanian T (2015) Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Appl Nanosci 5(4):499–504

    Article  CAS  Google Scholar 

  • Khandel P, Shahi SK (2016) Microbes mediated synthesis of metal nanoparticles: current status and future prospects. Int J Nanomater Biostruct 6(1):1–24

    Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci 96(24):13611–13614

    Article  CAS  Google Scholar 

  • Kumar RR, Priyadharsani KP, Thamaraiselvi K (2012) Mycogenic synthesis of silver nanoparticles by the Japanese environmental isolate Aspergillus tamarii. J Nanopart Res 14(5):860

    Article  CAS  Google Scholar 

  • Kümmerer K (2009) Antibiotics in the aquatic environment—a review—Part I. Chemosphere 75(4):417–434

    Article  CAS  Google Scholar 

  • Li X, Xu H, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 82:489–494

    Google Scholar 

  • Lirdprapamongkol K, Warisnoicharoen W, Soisuwan S, Svasti J (2010) Eco-friendly synthesis of fucoidan-stabilized gold nanoparticles. Am J Appl Sci 7(8):1038

    Article  Google Scholar 

  • Mahdavi M, Namvar F, Ahmad MB, Mohamad R (2013) Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18(5):5954–5964

    Article  Google Scholar 

  • Mala JGS, Rose C (2014) Facile production of ZnS quantum dot nanoparticles by Saccharomyces cerevisiae MTCC 2918. J Biotechnol 170:73–78

    Article  CAS  Google Scholar 

  • Malarkodi C, Rajeshkumar S, Vanaja M, Paulkumar K, Gnanajobitha G, Annadurai G (2013) Eco-friendly synthesis and characterization of gold nanoparticles using Klebsiella pneumoniae. J Nanostruct Chem 3(1):30

    Article  Google Scholar 

  • Martins M, Mourato C, Sanches S, Noronha JP, Crespo MTB, Pereira IAC (2017) Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds. Water Res 108:160–168

    Article  CAS  Google Scholar 

  • Mashrai A, Khanam H, Aljawfi RN (2017) Biological synthesis of ZnO nanoparticles using C. albicans and studying their catalytic performance in the synthesis of steroidal pyrazolines. Arab J Chem 10:S1530–S1536

    Article  CAS  Google Scholar 

  • Mazumdar H, Haloi N (2017) A study on Biosynthesis of Iron nanoparticles by Pleurotus sp. J Microbiol Biotechnol Res 1(3):39–49

    Google Scholar 

  • Menon S, Rajeshkumar S, Kumar V (2017) A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resour Effic Technol 3(4):516–527

    Article  Google Scholar 

  • Mirzadeh S, Darezereshki E, Bakhtiari F, Fazaelipoor MH, Hosseini MR (2013) Characterization of zinc sulfide (ZnS) nanoparticles biosynthesized by Fusarium oxysporum. Mater Sci Semicond Process 16(2):374–378

    Article  CAS  Google Scholar 

  • Mishra AN, Bhadauria S, Gaur MS, Pasricha R (2010) Extracellular microbial synthesis of gold nanoparticles using fungus Hormoconis resinae. J Miner Met Mater Soc 62(11):45–48

    Article  CAS  Google Scholar 

  • Mishra A, Tripathy SK, Wahab R, Jeong SH, Hwang I, Yang YB, Yun SI (2011) Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C 2 C 12 cells. Appl Microbiol Biotechnol 92(3):617–630

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519

    Article  CAS  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem 3(5):461–463

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) An evaluation of technologies for the heavy metal remediation of dredged sediments. J Hazard Mater 85(1–2):145–163

    Article  CAS  Google Scholar 

  • Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Azam A, Naqvi A (2010) Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Biores Technol 101(22):8772–8776

    Article  CAS  Google Scholar 

  • Namvar F, Azizi S, Ahmad MB, Shameli K, Mohamad R, Mahdavi M, Tahir PM (2015) Green synthesis and characterization of gold nanoparticles using the marine macroalgae Sargassum muticum. Res Chem Intermed 41(8):5723–5730

    Article  CAS  Google Scholar 

  • Nanda A, Saravanan M (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomed Nanotechnol Biol Med 5(4):452–456

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2011) Synthesis and characterization of nano-gold composite using Cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol. J Hazard Mater 189(1–2):519–525

    Article  CAS  Google Scholar 

  • Narayanan KB, Park HH, Sakthivel N (2013) Extracellular synthesis of mycogenic silver nanoparticles by Cylindrocladium floridanum and its homogeneous catalytic degradation of 4-nitrophenol. Spectrochim Acta A Mol Biomol Spectrosc 116:485–490

    Article  CAS  Google Scholar 

  • Permina EA, Kazakov AE, Kalinina OV, Gelfand MS (2006) Comparative genomics of regulation of heavy metal resistance in Eubacteria. BMC Microbiol 6(49):1–11

    Google Scholar 

  • Phanjom P, Ahmed G (2015) Biosynthesis of silver nanoparticles by Aspergillus oryzae (MTCC No. 1846) and its characterizations. Nanosci Nanotechnol 5(1):14–21

    CAS  Google Scholar 

  • Prakasham RS, Buddana SK, Yannam SK, Guntuku GS (2012) Characterization of silver nanoparticles synthesized by using marine isolate Streptomyces albidoflavus. J Microbiol Biotechnol 22(5):614–621

    Article  CAS  Google Scholar 

  • Prasad TN, Kambala VSR, Naidu R (2013) Phyconanotechnology: synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterisation. J Appl Phycol 25(1):177–182

    Article  CAS  Google Scholar 

  • Rai M, Gade A, Yadav A (2011) Biogenic nanoparticles: an introduction to what they are, how they are synthesized and their applications. In: Rai M, Duran N (eds) Metal nanoparticles in microbiology. Springer, New York, pp 1–14

    Chapter  Google Scholar 

  • Rajamanickam U, Mylsamy P, Viswanathan S, Muthusamy P (2012) Biosynthesis of zinc nanoparticles using actinomycetes for antibacterial food packaging. In: International conference on nutrition and food sciences Singapore, vol 39

  • Rajathi FAA, Parthiban C, Kumar VG, Anantharaman P (2012) Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kützing). Spectrochim Acta A Mol Biomol Spectrosc 99:166–173

    Article  CAS  Google Scholar 

  • Rajeshkumar S, Kannan C, Annadurai G (2012) Green synthesis of silver nanoparticles using marine brown algae Turbinaria conoides and its antibacterial activity. Int J Pharma Bio Sci 3(4):502–510

    CAS  Google Scholar 

  • Rajeshkumar S, Malarkodi C, Gnanajobitha G, Paulkumar K, Vanaja M, Kannan C, Annadurai G (2013) Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. J Nanostruct Chem 3(1):44

    Article  Google Scholar 

  • Resgalla C, Noldin JA, Tamanaha MS, Deschamps FC, Eberhardt DS, Rörig LR (2007) Risk analysis of herbicide quinclorac residues in irrigated rice areas, Santa Catarina, Brazil. Ecotoxicology 16(8):565–571

    Article  CAS  Google Scholar 

  • Saifuddin N, Wong CW, Yasumira AA (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. J Chem 6(1):61–70

    CAS  Google Scholar 

  • Salvadori MR, Lepre LF, Ando RA, do Nascimento CAO, Corrêa B (2013) Biosynthesis and uptake of copper nanoparticles by dead biomass of Hypocrea lixii isolated from the metal mine in the Brazilian Amazon region. PLoS ONE 8(11):e80519

    Article  Google Scholar 

  • Saunders JA, Lee MK, Dhakal P, Ghandehari SS, Wilson T, Billor MZ, Uddin A (2018) Bioremediation of arsenic-contaminated groundwater by sequestration of arsenic in biogenic pyrite. Appl Geochem 96:233–243

    Article  CAS  Google Scholar 

  • Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar BK, Venkataraman A (2008) Biosynthesis and stabilization of Au and Au–Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Technol Adv Mater 9(3):035012

    Article  CAS  Google Scholar 

  • Selvakumar P, Viveka S, Prakash S, Jasminebeaula S, Uloganathan R (2012) Antimicrobial activity of extracellularly synthesized silver nanoparticles from marine derived Streptomyces rochei. Int J Pharma Bio Sci 3(3):188–197

    CAS  Google Scholar 

  • Selvarajan E, Mohanasrinivasan V (2013) Biosynthesis and characterization of ZnO nanoparticles using Lactobacillus plantarum VITES07. Mater Lett 112:180–182

    Article  CAS  Google Scholar 

  • Sen K, Sinha P, Lahiri S (2011) Time dependent formation of gold nanoparticles in yeast cells: a comparative study. Biochem Eng J 55(1):1–6

    Article  CAS  Google Scholar 

  • Sen F, Boghossian AA, Sen S, Ulissi ZW, Zhang J, Strano MS (2012a) Observation of oscillatory surface reactions of riboflavin, trolox, and singlet oxygen using single carbon nanotube fluorescence spectroscopy. ACS Nano 6(12):10632–10645

    Article  CAS  Google Scholar 

  • Sen S, Sen F, Boghossian AA, Zhang J, Strano MS (2012b) Effect of reductive dithiothreitol and trolox on nitric oxide quenching of single-walled carbon nanotubes. J Phys Chem C 117(1):593–602

    Article  CAS  Google Scholar 

  • Senapati S, Syed A, Moeez S, Kumar A, Ahmad A (2012) Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis. Mater Lett 79:116–118

    Article  CAS  Google Scholar 

  • Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42(5):919–923

    Article  CAS  Google Scholar 

  • Shantkriti S, Rani P (2014) Biological synthesis of copper nanoparticles using Pseudomonas fluorescens. Int J Curr Microbiol Appl Sci 3(9):374–383

    Google Scholar 

  • Sharma B, Purkayastha DD, Hazra S, Thajamanbi M, Bhattacharjee CR, Ghosh NN, Rout J (2014) Biosynthesis of fluorescent gold nanoparticles using an edible freshwater red alga, Lemanea fluviatilis (L.) C. Ag. and antioxidant activity of biomatrix loaded nanoparticles. Bioprocess Biosyst Eng 37(12):2559–2565

    Article  CAS  Google Scholar 

  • Sharma D, Kanchi S, Bisetty K (2015) Biogenic synthesis of nanoparticles: a review. Arab J Chem. https://doi.org/10.1016/j.arabjc.2015.11.002

    Article  Google Scholar 

  • Sheikhloo Z, Salouti M, Katiraee F (2011) Biological synthesis of gold nanoparticles by fungus Epicoccum nigrum. J Clust Sci 22(4):661–665

    Article  CAS  Google Scholar 

  • Shi G, Li Y, Xi G, Xu Q, He Z, Liu Y, Zhang J, Cai J (2017) Rapid green synthesis of gold nanocatalyst for high-efficiency degradation of quinclorac. J Hazard Mater 335:170–177

    Article  CAS  Google Scholar 

  • Singh AV, Patil R, Anand A, Milani P, Gade WN (2010) Biological synthesis of copper oxide nano particles using Escherichia coli. Curr Nanosci 6(4):365–369

    Article  CAS  Google Scholar 

  • Singh M, Kalaivani R, Manikandan S, Sangeetha N, Kumaraguru AK (2013) Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine macroalga. Appl Nanosci 3(2):145–151

    Article  CAS  Google Scholar 

  • Sundaram PA, Augustine R, Kannan M (2012) Extracellular biosynthesis of iron oxide nanoparticles by Bacillus subtilis strains isolated from rhizosphere soil. Biotechnol Bioprocess Eng 17(4):835–840

    Article  CAS  Google Scholar 

  • Taniguchi N (1974) On the basic concept of nano-technology. In: Proceedings of the international conference on production engineering, Tokyo, Part II. Japan Society of Precision Engineering

  • Ternes TA, Joss A, Siegrist H (2004) Peer reviewed: scrutinizing pharmaceuticals and personal care products in wastewater treatment. Environ Sci Technol 38:392A

    Article  CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6(2):257–262

    Article  CAS  Google Scholar 

  • Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for large-scale production of AgNPs). Insci J 1(1):65–79

    Article  CAS  Google Scholar 

  • Varshney R, Bhadauria S, Gaur MS, Pasricha R (2010) Characterization of copper nanoparticles synthesized by a novel microbiological method. J Miner Met Mater Soc 62(12):102–104

    Article  CAS  Google Scholar 

  • Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5(1):33–40

    Article  CAS  Google Scholar 

  • Verma A, Dua R, Singh A, Bishnoi NR (2015) Biogenic sulfides for sequestration of Cr(VI), COD and sulfate from synthetic wastewater. Water Sci 29(1):19–25

    Article  Google Scholar 

  • Wang R, Wang S, Tai Y, Tao R, Dai Y, Guo J, Yang Y, Duan S (2017a) Biogenic manganese oxides generated by green algae Desmodesmus sp. WR1 to improve bisphenol A removal. J Hazard Mater 339:310–319

    Article  CAS  Google Scholar 

  • Wang X, Zhang D, Pan X, Lee DJ, Al-Misned FA, Mortuza MG, Gadd GM (2017b) Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil. Chemosphere 170:266–273

    Article  CAS  Google Scholar 

  • Wang PT, Song YH, Fan HC, Yu L (2018) Bioreduction of azo dyes was enhanced by in situ biogenic palladium nanoparticles. Bioresour Technol 266:176–180

    Article  CAS  Google Scholar 

  • Wu R, Wu H, Jiang X, Shen J, Faheem M, Sun X, Li J, Han W, Wang L, Liu X (2017) The key role of biogenic manganese oxides in enhanced removal of highly recalcitrant 1,2,4-triazole from bio-treated chemical industrial wastewater. Environ Sci Pollut Res 24(11):10570–10583

    Article  CAS  Google Scholar 

  • Xu J, Bravo AG, Lagerkvist A, Bertilsson S, Sjöblom R, Kumpiene J (2014) Sources and remediation techniques for mercury contaminated soil. Environ Int 74:42–53

    Article  CAS  Google Scholar 

  • Yadav KK, Singh JK, Gupta N, Kumar V (2017) A review of nanobioremediation technologies for environmental cleanup: a novel biological approach. J Mater Environ Sci 8:740–757

    CAS  Google Scholar 

  • Zhou D, Kim DG, Ko SO (2015) Heavy metal adsorption with biogenic manganese oxides generated by Pseudomonas putida strain MnB1. J Ind Eng Chem 24:132–139

    Article  CAS  Google Scholar 

  • Zonooz NF, Salouti M (2011) Extracellular biosynthesis of silver nanoparticles using cell filtrate. Sci Iran 18(6):1631–1635

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided by Indian Institute of Technology (Indian School of Mines), Dhanbad (Grant No. S/86/2014-2015/ESE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jagadevan.

Additional information

Editorial responsibility: Fatih ŞEN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Tyagi, M. & Jagadevan, S. Mechanistic removal of environmental contaminants using biogenic nano-materials. Int. J. Environ. Sci. Technol. 16, 7591–7606 (2019). https://doi.org/10.1007/s13762-019-02468-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-019-02468-3

Keywords

Navigation