Skip to main content

Advertisement

Log in

Simultaneous phytoremediation of chromium and phenol by Lemna minuta Kunth: a promising biotechnological tool

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The aim of this work was to evaluate the usefulness of Lemna minuta Kunth for the simultaneous removal of Cr(VI) and phenol. The impact of these contaminants on plant growth and some biochemical processes have also been discussed for a better understanding and utilization of this species in the field of phytoremediation. The optimal growth conditions and plant tolerance to Cr(VI) and/or phenol as well as removal were determined. Plants exposed to Cr(VI) and phenol were able to efficiently grow and remove both contaminants at high concentrations (up to 2.5 and 250 mg/L, respectively) after 21 days, indicating that they were resistant to mixed contamination. There were no significant differences between chlorophyll, carotene and malondialdehyde content of treated plants with respect to the controls, which would be due to an efficient antioxidant response. L. minuta showed a higher biomass than control without contaminant when was exposed to low concentrations of Cr(VI), suggesting an hormesis effect. The main removal process involved in chromium phytoremediation would be sorption or accumulation in the biomass. Moreover, our results suggest that phenol could be used as a donor of carbon and energy by these plants. These findings demonstrated that Lemna minuta Kunth might be suitable for treatment of different solutions contaminated with Cr(VI) and phenol, showing a high potential to be used in the treatment of effluents containing mixed contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • APHA (1995) Standard Methods for the Examination of Water and Wastewater, 19th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Arora A, Saxena S, Sharma DK (2006) Tolerance and phytoaccumulation of chromium by three Azolla species. World J Microbiol Biotechnol 22:97–100

    Article  CAS  Google Scholar 

  • Badr NBE, Fawzy M (2008) Bioaccumulation and biosorption of heavy metals and phosphorous by Potamogeton pectinatus and Ceratophyllum demersum in two Nile delta lakes. Fresenius Environ Bull 17(3):283–294

    Google Scholar 

  • Chakraborty R, Karmakar S, Mukherjee S, Kumar S (2014) Kinetic evaluation of chromium(VI) sorption by water lettuce (Pistia). Water Sci Technol 69(1):195–201

    Article  CAS  Google Scholar 

  • Chaudhary E, Sharma P (2012) Duckweed as ecofriendly tool for phytoremediation. Int J Sci Res 3(6):1615–1617

    Google Scholar 

  • Chen Z, Huang Z, Cheng Y, Pan D, Pan X, Yu M, Pan Z (2012) Cr (VI) uptake mechanism of Bacillus cereus. Chemosphere 87(3):211–216

    Article  CAS  Google Scholar 

  • Cherian S, Oliveira M (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39:9377–9390

    Article  CAS  Google Scholar 

  • Dan P, Mandal S, De A, Mandal S (2016) Studies on the toxicity of chromium(VI) to Pistia stratiotes L. plant and its removal. Int J Curr Microbiol App Sci. 5(6):975–982

    Article  Google Scholar 

  • Delgadillo-López AE, González-Ramírez CA, Prieto-García F, Jr Villagómez-Ibarra, Acevedo-Sandoval O (2011) Fitorremediación: una alternativa para eliminar la contaminación. Trop Subtrop Agroecosys 14:597–612

    Google Scholar 

  • Dere S, Günes T, Sivaci R (1998) Spectrophotometric determination of chlorophyll A, B and total carotenoid contents of some algae species using different solvents. Turk J Bot 22:13–18

    Google Scholar 

  • Dixit R, Malaviya D, Pandiyan K, Singh U, Sahu A, Shukla R, Singh B, Rai J, Kumar Sharma P, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental. Proc Sustain 7:2189–2212

    Article  CAS  Google Scholar 

  • Guimaraes F, Aguiar R, Oliveira J, Silva J, Karam D (2012) Potential of macrophyte for removing arsenic from aqueous solution. Plant Daninha 30:683–696

    Article  Google Scholar 

  • Guttmann D, Poage G, Johnston T, Zhitkovich A (2008) Reduction with glutathione is a weakly mutagenic pathway in chromium(VI) metabolism. Chem Res Toxicol 21(11):2188–2194

    Article  CAS  Google Scholar 

  • Harvey PJ, Campanella BF, Castro PM, Harms H, Lichtfouse E, Schäffner AR, Smrcek S, Werck-Reichhart D (2002) Phytoremediation of polyaromatic hydrocarbons, anilines and phenols. Environ Sci Pollut Res Int 9(1):29–47

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  Google Scholar 

  • Hoagland DR, Broyer TC (1936) General nature of the process of salt accumulation by roots with description of experimental conditions. Plant Physiol 11:477–507

    Article  Google Scholar 

  • Hossain M, Kumita M, Michigami Y, Mori S (2005) Optimization of parameters for Cr(VI) adsorption on used black tea leaves. Adsorption 11(5):561–568

    Article  CAS  Google Scholar 

  • Huebert DB, Dyck BS, Shay JM (1993) The effect of EDTA on the assessment of Cu toxicity in the sbmerged aquatic macrophyte, Lemna trisulca L. Aquatic Toxicol 24:183–194

    Article  CAS  Google Scholar 

  • Ibáñez SG, Sosa Alderete LG, Medina MI, Agostini E (2012) Phytoremediation of phenol using Vicia sativa L. plants and its antioxidative response. Environ Sci Pollut Res 19:1555–1562

    Article  Google Scholar 

  • Jena P, Pradhan C, Kumar Patra H (2016) Cr+6-induced growth, biochemical alterations and Chromium bioaccumulation in Cassia tora (L.) Roxb. Ann Plant Sci 5(7):1368–1373

    Article  Google Scholar 

  • Jha P, Jobby R, Kudale S, Modi N, Dhaneshwar A, Desai N (2013) Biodegradation of phenol using hairy roots of Helianthus annuus L. Int Biodeterior Biodegrad 77:106–113

    Article  CAS  Google Scholar 

  • Kart A, Koc E, Dalginli KY, Gulmez C, Sertcelik M, Atakisi O (2016) The therapeutic role of glutathione in oxidative stress and oxidative DNA damage caused by hexavalent chromium. Biol Trace Elem Res 174(2):387–391

    Article  CAS  Google Scholar 

  • Mallick S, Sinam G, Kumar Mishra R, Sinha S (2010) Interactive effects of Cr and Fe treatments on plants growth, nutrition and oxidative status in Zea mays L. Ecotoxicol Environ Saf 73(5):987–995

    Article  CAS  Google Scholar 

  • Navarro-Aviñó JP, Aguilar-Alonso I, López-Moya JR (2007) Aspectos bioquímicos y genéticos de la tolerancia y acumulación de metales pesados en plantas. Ecosistemas 16:10–25

    Google Scholar 

  • Olguín EJ, Sánchez-Galván G (2012) Heavy metal removal in phytofiltration and phycoremediation: the need to differentiate between bioadsorption and bioaccumulation. New Biotechnol 30(1):1–8

    Article  Google Scholar 

  • Oliveira H (2012) Chromium as an environmental pollutant: insights on induced plant toxicity. J Bot 375843:1–8

    Google Scholar 

  • Ontañon O, González P, Agostini E (2015) Biochemical and molecular mechanisms involved in simultaneous phenol and Cr(VI) removal by Acinetobacter guillouiae SFC 500-1A. Environ Sci Pollut Res 22(17):13014–13023

    Article  Google Scholar 

  • Paisio CE, Agostini E, González PS, Bertuzzi ML (2009) Lethal and teratogenic effects of phenol on Bufo arenarum embryos. J Hazard Mat 167:64–68

    Article  CAS  Google Scholar 

  • Poschenrieder C, Cabot C, Martos S, Gallego B, Barceló J (2013) Do toxic ions induce hormesis in plants? Plant Sci 212:15–25

    Article  CAS  Google Scholar 

  • Rai UN, Tripathi RD, Vajpayee P, Jha Vidyanath, Ali MB (2002) Bioaccumulation of toxic metals (Cr, Cd, Pb and Cu) by seeds of Euryale ferox Salisb (Makhana). Chemosphere 46:267–272

    Article  CAS  Google Scholar 

  • Rezania S, Taib S, Din M, Dahalan F, Kamy H (2016) Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mat 318:587–599

    Article  CAS  Google Scholar 

  • Shanker AK, Djanaguiraman M, Venkateswarlu B (2009) Chromium interactions in plants: current status and future strategies. Metallomics 1:375–383

    Article  CAS  Google Scholar 

  • Sood A, Uniya PL, Prasanna R, Ahluwalia AS (2012) Phytoremediation potential of aquatic macrophyte, Azolla. Ambio 41(2):122–137

    Article  CAS  Google Scholar 

  • Srivastava S, Srivastava M, Suprasanna P, D’souza SG (2011) Phytofiltration of arsenic from simulated contaminated water using Hydrilla verticillata in field conditions. Ecol Eng 37:1937–1941

    Article  Google Scholar 

  • Talano MA, Frontera S, González P, Medina MI, Agostini E (2010) Removal of 2,4-diclorophenol from aqueous solutions using tobacco hairy root cultures. J Hazard Mat 176:784–791

    Article  CAS  Google Scholar 

  • Teixeira J, Ferraz P, Almeida A, Verde N, Fidalgo F (2013) Metallothionein multigene family expression is differentially affected by Chromium(III) and (VI) in Solanum nigrum L. plants. Food Energy Sec 2:130–140

    Article  Google Scholar 

  • Tobin JM, Cooper DG, Neufield R (1984) Uptake of metal ions by Rhizopus arrhizus biomass. Appl Environ Micro 47:821–824

  • Truu J, Truu M, Espenberg M, Nõlvak H, Juhanson J (2015) Phytoremediation and plant-assisted bioremediation in soil and treatment wetlands: a review. Open Biotechnol J 9:85–92

    Article  Google Scholar 

  • Veglio' F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44:301–316

    Article  Google Scholar 

  • Vermaat JE, Hanif MK (1998) Performance of common duckweed species (Lemnaceae) and the waterfern Azolla filiculoides on different types of waste water. Water Res 32(9):2569–2576

    Article  CAS  Google Scholar 

  • Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380(1–3):48–65

    Article  CAS  Google Scholar 

  • Wagner M, Nicell JA (2002) Detoxification of phenolic solutions with horseradish. Water Res 36:4041–4052

    Article  CAS  Google Scholar 

  • Wang TC, Weissman JC, Ramesh G, Varadarajan R, Benemann JR (1996) Parameters for removal of toxic heavy metals by water milfoil (Myriophyllum spicatum). Bull Environ Contam Toxicol 57:779–786

    Article  CAS  Google Scholar 

  • Weerasinghe A, Ariyawnasa S, Weerasooriya R (2008) Phyto-remediation potential of Ipomoea aquatica for Cr(VI) mitigation. Chemosphere 70(3):521–524

    Article  CAS  Google Scholar 

  • Zhou ZY, Liu WX, Pei G, Ren H, Wang J, Xu QL, Xie HH, Wan FH, Tan JW (2013) Phenolics from Ageratina adenophora roots and their phytotoxic effects on Arabidopsis thaliana seed germination and seedling growth. J Agric Food Chem 61(48):11792–11799

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors of this paper are members of the research career from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina). M.F. has a fellowship from CONICET, and M.I.M. is teacher at U.N.R.C. We wish to thank CONICET D5205 for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. E. Paisio.

Additional information

Editorial responsibiility: T. Karak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paisio, C.E., Fernandez, M., González, P.S. et al. Simultaneous phytoremediation of chromium and phenol by Lemna minuta Kunth: a promising biotechnological tool. Int. J. Environ. Sci. Technol. 15, 37–48 (2018). https://doi.org/10.1007/s13762-017-1368-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1368-1

Keywords

Navigation