Skip to main content
Log in

Reaction of CS2 with CHBr•− and CBr •−2 in the gas phase: a Theoretical Mechanistic Study

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The mechanisms of reactions of CS2 with CHBr•−/CBr •−2 anions have been investigated by density functional theory calculations. Our results strongly suggest that the main pathway is middle-C attack, which is highly exothermic. The primary ionic products are Br and C2S2 , and SCHBr is a minor product. Theoretical results are consistent with experimental observation. Based on the investigations presented here, we confirm that CHBr•− is more reactive than CBr •−2 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.K. Murray, D.G. Leopold, T.M. Miller, W.C. Lineberger, J. Chem. Phys. 89, 5442 (1988)

    Article  CAS  Google Scholar 

  2. M.K. Gilles, K.M. Ervin, J. Ho, W.C. Lineberger, J. Phys. Chem. 96, 1130 (1992)

    Article  CAS  Google Scholar 

  3. R.L. Schwartz, G.E. Davico, T.M. Ramond, W.C. Lineberger, J. Phys. Chem. A 103, 8213 (1999)

    Article  CAS  Google Scholar 

  4. J.F. Bunnett, Acc. Chem. Res. 11, 413 (1978)

    Article  CAS  Google Scholar 

  5. J.K. Kochi, Angew. Chem. Int. Ed. Engl. 27, 1227 (1988)

    Article  Google Scholar 

  6. E.C. Ashby, Acc. Chem. Res. 21, 414 (1988)

    Article  CAS  Google Scholar 

  7. J.-M. Saveant, Acc. Chem. Res. 26, 455 (1993)

    Article  CAS  Google Scholar 

  8. H. Lund, K. Daasbjerg, T. Lund, S.U. Pedersen, Acc. Chem. Res. 28, 313 (1995)

    Article  CAS  Google Scholar 

  9. A. Kasdan, E. Herbst, W.C. Lineberger, Chem. Phys. Lett. 31, 78 (1975)

    Article  CAS  Google Scholar 

  10. P. Kebarle, S. Chowdhury, Chem. Rev. 87, 513 (1987)

    Article  CAS  Google Scholar 

  11. J.E. Bartmess, Mass Spectrom. Rev. 8, 297 (1989)

    Article  CAS  Google Scholar 

  12. D.G. Leopold, A.M.S. Miller, W.C. Lineberger, J. Am. Chem. Soc. 108, 178 (1986)

    Article  CAS  Google Scholar 

  13. S. Ingemann, R.H. Fokkens, N.M.M. Nibbering, J. Org. Chem. 56, 607 (1991)

    Article  CAS  Google Scholar 

  14. W.B. Knighton, E.P. Grimsrud, J. Am. Chem. Soc. 114, 2336 (1992)

    Article  CAS  Google Scholar 

  15. L. Crocker, T. Wang, P.J. Kebarle, J. Am. Chem. Soc. 115, 7818 (1993)

    Article  CAS  Google Scholar 

  16. E.E. Ferguson, F.C. Fehsenfeld, D.L. Albritton, Gas-phase ion chemistry (Academic Press, New York, 1979)

    Google Scholar 

  17. K.R. Jennings, Gas-phase ion chemistry (Academic Press, New York, 1979)

    Google Scholar 

  18. A.G. Harrison, Chemical ionization mass spectrometry (CRC Press, Boca Raton, 1983)

    Google Scholar 

  19. E.P. Grimsrud, Electron capture (Elsevier, New York, 1981)

    Google Scholar 

  20. M. Born, S. Ingemann, N.M.M. Nibbering, J. Am. Chem. Soc. 116, 7210 (1994)

    Article  CAS  Google Scholar 

  21. M. Born, S. Ingemann, N.M.M. Nibbering, J. Chem. Soc. Perkin Trans. 2, 2537 (1996)

    Article  Google Scholar 

  22. S.M. Villano, N. Eyet, W.C. Lineberger, V.M. Bierbaum, Int. J. Mass Spectrom. 280, 12 (2009)

    Article  CAS  Google Scholar 

  23. J.M. Van Doren, S.E. Barlow, C.H. DePuy, V.M. Bierbaum, Int. J. Mass Spectrom. Ion Process 81, 85 (1987)

    Article  Google Scholar 

  24. Y. Li, H.-L. Liu, Y.-B. Sun, Z. Li, X.-R. Huang, C.-C. Sun, J. Phys. Chem. A 114, 2874 (2010)

    Article  CAS  Google Scholar 

  25. J.-X. Liang, Z.-Y. Geng, Y.-C. Wang, Int. J. Quantum Chem. 111, 3048 (2011)

    Article  CAS  Google Scholar 

  26. J.-X. Liang, Z.-Y. Geng, Y.-C. Wang, J. Comput. Chem. 33, 595 (2012)

    Article  CAS  Google Scholar 

  27. J.-X. Liang, Y.-B. Wang, Z.-Y. Geng, Sci. China Ser. B 55, 1384 (2012)

    Article  CAS  Google Scholar 

  28. J.-X. Liang, Y.-B. Wang, Q.M.G. Hasi, Z.-Y. Geng, Bull. Korean Chem. Soc. 34, 426 (2013)

    Article  CAS  Google Scholar 

  29. M.J. Frisch, G.W. Trucks, H.B. Schlegel, H.B. Schlegel, G.E. Scuseria, J.A. Pople et al., Gaussian 03 (Revision D. 01) (Gaussian Inc., Pittsburgh, 2003)

    Google Scholar 

  30. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  CAS  Google Scholar 

  31. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  CAS  Google Scholar 

  32. D.E. Woon, T.H. Dunning Jr, J. Chem. Phys. 98, 1358 (1993)

    Article  CAS  Google Scholar 

  33. K. Fukui, Acc. Chem. Revs. 14, 363 (1981)

    Article  CAS  Google Scholar 

  34. A.E. Reed, L.A.F. Weinhold, Chem. Rev. 88, 899 (1988)

    Article  CAS  Google Scholar 

  35. G.S. Hammond, J. Am. Chem. Soc. 77, 334 (1955)

    Article  CAS  Google Scholar 

  36. C.H. DePuy, V.M. Bierbaum, J. Am. Chem. Soc. 103, 5034 (1981)

    Article  CAS  Google Scholar 

  37. M.-T. Rayez, J.-C. Rayez, J.-P. Sawerysyn, J. Phys. Chem. 98, 11342 (1994). The L parameter is defined as the ratio of the increase in the length of the bond being broken and the elongation of the bond being formed, each with respect to its equilibrium value in the reactant and the product

    Article  CAS  Google Scholar 

  38. S. Scheiner, J. Phys. Chem. A 115, 11202 (2011)

    Article  CAS  Google Scholar 

  39. M. Born, S. Ingemann, N.M.M. Nibbering, Int. J. Mass Spectrom. 194, 103 (2000)

    Article  CAS  Google Scholar 

  40. R.A. Moss, M. Fedorynski, W.C. Shieh, J. Am. Chem. Soc. 101, 4736 (1979)

    Article  CAS  Google Scholar 

  41. N.P. Smith, I.D.R. Stevens, J. Chem. Soc. Perkin. Trans. 2, 1298 (1979)

    Article  Google Scholar 

  42. R.A. Moss, Acc. Chem. Res. 13, 58 (1980)

    Article  CAS  Google Scholar 

  43. W.M. Jones, R.A. LaBar, U.H. Brinker, P.H. Gebert, J. Am. Chem. Soc. 99, 6379 (1977)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Project supported by the National Basic Research Program of China (2013CB430206-01), the National Natural Science Fund (41261052), the Young and Middle-aged Scientific Research Fund of Northwest University for Nationalities (12XB34), and the Fundamental Research Funds for the Central Universities (31920130024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Junxi or Zhang Qiang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TXT 469 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Junxi, L., Yajun, W., Yu, L. et al. Reaction of CS2 with CHBr•− and CBr •−2 in the gas phase: a Theoretical Mechanistic Study. J IRAN CHEM SOC 11, 1345–1352 (2014). https://doi.org/10.1007/s13738-013-0404-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-013-0404-4

Keywords

Navigation