Skip to main content
Log in

A polymer electrolyte by ozonolysis of poly(3-(trimethoxysilyl) propyl methacrylate) grafted on natural rubber latex in colloid state and its application

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Polar species of natural rubber (NR) core were produced from PMPS-g-NR using ozonolysis. Poly(3-(trimethoxysilyl) propyl methacrylate) (PMPS) coated on NR particles (PMPS-g-NR) was successfully prepared by surface grafting polymerization using a redox couple initiator. PMPS-g-NR was treated by ozone at different feeding rates (50, 75, 100, and 125 mg/h) and treatment times (15, 30, 60, and 120 min) leading to an increase in polar function. Fourier transform infrared spectrometry (FTIR) showed that unsaturated bond (840 cm−1) was consumed by ozone resulting in higher intensities of carbonyl and carboxyl groups. The highest percent gel content of ozonized PMPS-g-NR was found at 100 mg/h at each ozone treatment time. After preparation as a polymer electrolyte, the electrical properties were significantly improved. Ozonized PMPS-g-NR showed that the highest ionic conductivity of ozonized PMPS-g-NR was 1.96 mS cm−1 using an ozone feeding rate of 75 mg/h for 60 min while PMPS-g-NR was 0.41 mS cm−1. The solar cell conversion efficiency (ƞ) of ozonized PMPS-g-NR at 75 mg/h for 60 min was 1.51% having a higher value than PMPS-g-NR (0.35%). For thermal stress stability, normalized ƞ value of ozonized PMPS-g-NR remained at 6.25% after 26 days while normalized ƞ of PMPS-g-NR was 27.27% at 22 days and then reduced to an approaching zero value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C Photochem Rev 4:145–153

    Article  CAS  Google Scholar 

  2. Wei D (2010) Dye sensitized solar cells. Int J Mol Sci 11:1103–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maabong K, Muiva CM, Monowe P, Sathiaraj TS, Hopkins M, Nguyen L, Malungwa K, Thobega M (2015) Natural pigments as photosensitizers for dye-sensitized solar cells with TiO2 thin films. Int J Renew Energy Res 5:54–60

    Google Scholar 

  4. Jawad M, Al-Ajaj E, Suhail M, Majid S (2014) Efficiency enhancement of photovoltaic performance of quasisolid state dye sensitized solar cell with TPAI and KI binary iodide salt mixture. Adv Phys Theor Appl 34:51–59

    Google Scholar 

  5. Bandara T, Svensson T, Dissanayake M, Furlani M, Jayasundara W, Fernando PSL, Albinsson I, Mellander BE (2013) Conductivity behaviour in novel quasi-solid-state electrolyte based on polyacrylonitrile and tetrahexylammonium iodide intended for dye sensitized solar cells. J Natl Sci Found Sri Lanka 41:175–184

    Article  CAS  Google Scholar 

  6. Bandara TMWJ, Fernando HDNS, Furlani M, Albinsson I, Dissanayake MAKL, Ratnasekera JL, Mellander B-E (2017) Dependence of solar cell performance on the nature of alkaline counterion in gel polymer electrolytes containing binary iodides. J Solid State Electrochem 21:1571–1578

    Article  CAS  Google Scholar 

  7. Caruso F (2001) Nanoengineering of particle surfaces. Adv Mater 13:11–22

    Article  CAS  Google Scholar 

  8. Sakhare MS, Rajput H (2017) Polymer grafting and applications in pharmaceutical drug delivery systems—a brief review. Asian J Pharm Clin Res 10:59–63

    Article  CAS  Google Scholar 

  9. Zhou T, Zhu Y, Li X, Liu X, Yeung KWK, Wu S, Wang X, Cui Z, Yang X, Chu PK (2016) Surface functionalization of biomaterials by radical polymerization. Prog Mater Sci 83:191–235

    Article  CAS  Google Scholar 

  10. Bai H, Huang Z, Yang W (2009) Visible light-induced living surface grafting polymerization for the potential biological applications. J Polym Sci Polym Chem 47:6852–6862

    Article  CAS  Google Scholar 

  11. Aramesh M, Cervenka J (2015) Surface modification of porous anodic alumina for medical and biological applications. In: Seifalian A, Mel AD, Kalaskar DM (eds) Nanomedicine, 1st edn. One Central Press (OCP), Manchester

    Google Scholar 

  12. Kangwansupamonkon W, Gilbert RG, Kiatkamjornwong S (2005) Modification of natural rubber by grafting with hydrophilic vinyl monomers. Macromol Chem Phys 206:2450–2460

    Article  CAS  Google Scholar 

  13. Oliveira PC, Guimarães A, Cavaillé J-Y, Chazeau L, Gilbert RG, Santos AM (2005) Poly(dimethylaminoethyl methacrylate) grafted natural rubber from seeded emulsion polymerization. Polymer 46:1105–1111

    Article  CAS  Google Scholar 

  14. Lamb DJ, Anstey JF, Fellows CM, Monteiro MJ, Gilbert RG (2001) Modification of natural and artificial polymer colloids by “topology-controlled” emulsion polymerization. Biomacromolecules 2:518–525

    Article  CAS  PubMed  Google Scholar 

  15. Sim LN, Arof AK (2017) Elastomers and their potential as matrices in polymer electrolytes. In: Cankaya N (ed) Elastomers. IntechOpen, London

    Google Scholar 

  16. Ali AMM, Subban RHY, Bahron H, Yahya MZA, Kamisan AS (2013) Investigation on modified natural rubber gel polymer electrolytes for lithium polymer battery. J Power Sourc 244:636–640

    Article  CAS  Google Scholar 

  17. Kamisan AS, Kudin TIT, Ali AMM, Yahya MZA (2011) Electrical and physical studies on 49% methyl-grafted natural rubber-based composite polymer gel electrolytes. Electrochim Acta 57:207–211

    Article  CAS  Google Scholar 

  18. Kalkornsurapranee E, Vennemann N, Kummerlöwe C, Nakason C (2012) Novel thermoplastic natural rubber based on thermoplastic polyurethane blends: influence of modified natural rubbers on properties of the blends. Iran Polym J 21:689–700

    Article  CAS  Google Scholar 

  19. Thongnuanchan B, Rattanapan S, Persalea K, Thitithammawong A, Pichaiyut S, Nakason C (2017) Improving properties of natural rubber/polyamide 12 blends through grafting of diacetone acrylamide functional group. Polym Adv Technol 28:1148–1155

    Article  CAS  Google Scholar 

  20. Tahir M, Heinrich G, Mahmood N, Boldt R, Wießner S, Stöckelhuber KW (2018) Blending in situ polyurethane-urea with different kinds of rubber: performance and compatibility aspects. Materials 11:2175

    Article  PubMed Central  Google Scholar 

  21. Arayapranee W, Rempel GL (2013) Effects of polarity on the filler–rubber interaction and properties of silica filled grafted natural rubber composites. J Polym 2013:1–9

    Article  CAS  Google Scholar 

  22. Zamri S, Abdul Latif F, Izzati Husna Mohd Azuan S, Ibrahim R, Hadip F, Kamaluddin N, Ali AMM (2018) Filler and polymer interactions in polymethyl methacrylate/50% epoxidized natural rubber/silicon dioxide nanocomposites. Malays J Anal Sci 22:586–593

    Google Scholar 

  23. Mensah B, Kang SI, Wang W, Nah C (2018) Effect of graphene on polar and nonpolar rubber matrices. Mech Adv Mater Modern Proc 4:1

    Article  Google Scholar 

  24. Syahidah Hussin N, Harun F, Han Chan C (2017) Thermal properties and conductivity of thermally treated epoxidized natural rubber-based solid polymer electrolytes. Macromol Symp 376:1700049

    Article  CAS  Google Scholar 

  25. Klinklai W, Kawahara S, Mizumo T, Yoshizawa M, Sakadapipanich JT, Isono Y, Ohno H (2003) Depolymerization and ionic conductivity of enzymatically deproteinized natural rubber having epoxy group. Eur Polym J 39:1707–1712

    Article  CAS  Google Scholar 

  26. Lin Q, Lu YB, Ren WT, Zhang Y (2015) The grafting reaction of epoxidized natural rubber with carboxyl ionic liquids and the ionic conductivity of solid electrolyte composites. RSC Adv 5:90031–90040

    Article  CAS  Google Scholar 

  27. Fainleib A, Pires RV, Lucas EF, Soares BG (2013) Degradation of non-vulcanized natural rubber—renewable resource for fine chemicals used in polymer synthesis. Polimeros 23:441–450

    Article  CAS  Google Scholar 

  28. Joseph J, Son KM, Vittal R, Lee W, Kim K-J (2006) Quasi-solid-state dye-sensitized solar cells with siloxane poly(ethylene glycol) hybrid gel electrolyte. Semicond Sci Technol 21:697–701

    Article  CAS  Google Scholar 

  29. Zhao J, Jo S-G, Kim D-W (2014) Photovoltaic performance of dye-sensitized solar cells assembled with electrospun polyacrylonitrile/silica-based fibrous composite membranes. Electrochim Acta 142:261–267

    Article  CAS  Google Scholar 

  30. Yang Y, Hu H, Zhou C-H, Xu S, Sebo B, Zhao X-Z (2011) Novel agarose polymer electrolyte for quasi-solid state dye-sensitized solar cell. J Power Source 196:2410–2415

    Article  CAS  Google Scholar 

  31. Bourgeat-Lami E, Tissot I, Lefebvre F (2002) Synthesis and characterization of SiOH-functionalized polymer latexes using methacryloxy propyl trimethoxysilane in emulsion polymerization. Macromolecules 35:6185–6191

    Article  CAS  Google Scholar 

  32. Cataldo F, Ursini O, Angelini G (2010) Surface oxidation of rubber crumb with ozone. Polym Degrad Stabil 95:803–810

    Article  CAS  Google Scholar 

  33. Fisher TJ, Dussault PH (2017) Alkene ozonolysis. Tetrahedron 73:4233–4258

    Article  CAS  Google Scholar 

  34. Kurtén T, Bonn B, Vehkamäki H, Kulmala M (2007) Computational study of the reaction between biogenic stabilized Criegee intermediates and sulfuric acid. J Phys Chem A 111:3394–3401

    Article  CAS  PubMed  Google Scholar 

  35. Huang D, Chen ZM, Zhao Y, Liang H (2013) Newly observed peroxides and the water effect on the formation and removal of hydroxyalkyl hydroperoxides in the ozonolysis of isoprene. Atmos Chem Phys 13:5671–5683

    Article  CAS  Google Scholar 

  36. Nor HM, Ebdon JR (2000) Ozonolysis of natural rubber in chloroform solution. Part 1. A study by GPC and FTIR spectroscopy. Polymer 41:2359–2365

    Article  CAS  Google Scholar 

  37. Miwa S, Kikuchi T, Ohtake Y, Tanaka K (2011) Surface degradation of poly(ethylene-co-propylene-co-5-ethylidene-2-norbornene) terpolymer by ozone in water. Polym Degrad Stabil 96:1503–1507

    Article  CAS  Google Scholar 

  38. Rodrigues FHA, Santos EF, Feitosa JPA, Ricardo N, Heatley F (2004) Ozonation of unstretched natural rubber film from Hevea brasiliensis studied by ozone consumption and 13C NMR. Polym Int 53:733–739

    Article  CAS  Google Scholar 

  39. Rakovsky S, Anachkov M, Zaikov G (2009) Fields of ozone applications. Chem Chem Technol 3:139–161

    Google Scholar 

  40. Zhang D, Zhang R (2002) Mechanism of OH formation from ozonolysis of isoprene: a quantum-chemical study. J Am Chem Soc 124:2692–2703

    Article  CAS  PubMed  Google Scholar 

  41. Kolsaker P (1978) Formation of cis and trans ozonides from Cinnamic esters. Acta Chem Scand B 32:557–560

    Article  Google Scholar 

  42. Aziz SB (2013) Li+ ion conduction mechanism in poly(ε-caprolactone)-based polymer electrolyte. Iran Polym J 22:877–883

    Article  CAS  Google Scholar 

  43. Promdum Y, Klinpituksa P, Ruamcharoen J (2009) Grafting copolymerization of natural rubber with 2-hydroxyethyl methacrylate for plywood adhesion improvement. SJST 31:453–457

    Google Scholar 

  44. Lee W-F, Chen C-Y (2015) Graft copolymerization of 3-(trimethoxysilyl) propyl methacrylate onto styrene–butadiene–styrene triblock copolymer. J Elastom Plast 47:103–116

    Article  CAS  Google Scholar 

  45. Mohapatra S, Nando GB (2013) Chemical modification of natural rubber in the latex stage by grafting cardanol, a waste from the Cashew Industry and a renewable resource. Ind Eng Chem Res 52:5951–5957

    Article  CAS  Google Scholar 

  46. Tan KS, Yusof A (2003) Some studies on the effect of solvents in ENR 60 gel content measurements. J Rubber Res 6:189–194

    CAS  Google Scholar 

  47. Wongthong P, Nakason C, Pan Q, Rempel GL, Kiatkamjornwong S (2013) Modification of deproteinized natural rubber via grafting polymerization with maleic anhydride. Eur Polym J 49:4035–4046

    Article  CAS  Google Scholar 

  48. Lee W-F, Chen C-Y (2015) Graft copolymerization of 3-(trimethoxysilyl) propyl methacrylate onto styrene–butadiene–styrene triblock copolymer. J Elast Plast 47:103–116

    Article  CAS  Google Scholar 

  49. Tham WL, Chow WS, Ishak ZAM (2010) The effect of 3-(trimethoxysilyl) propyl methacrylate on the mechanical, thermal, and morphological properties of poly(methyl methacrylate)/hydroxyapatite composites. J Appl Polym Sci 118:218–228

    Article  CAS  Google Scholar 

  50. Smith BC (1999) Infrared spectral interpretation: a systematic approach. CRC Press LLC, Boca Raton

    Google Scholar 

  51. Sassi Z, Bureau JC, Bakkali A (2002) Spectroscopic study of TMOS–TMSM–MMA gels: previously identification of the networks inside the hybrid material. Vib Spectrosc 28:299–318

    Article  CAS  Google Scholar 

  52. Simionescu B, Olaru M, Aflori M, Cotofana C (2010) Silsesquioxane-based hybrid nanocomposite with self-assembling properties for porous limestones conservation. High Perform Polym 22:42–55

    Article  CAS  Google Scholar 

  53. Sasitaran M, Manroshan S, Lim CS, Krishna Veni BN, Ong SK, Gunasunderi R (2017) Preparation and characterisation of crosslinked natural rubber (SMR CV 60) and epoxidised natural rubber (ENR-50) blends. ASEAN J Sci Technol Develop 34:106–118

    Article  Google Scholar 

  54. Carretero-González J, Ezquerra TA, Amnuaypornsri S, Toki S, Verdejo R, Sanz A, Sakdapipanich J, Hsiao BS, López-Manchado MA (2010) Molecular dynamics of natural rubber as revealed by dielectric spectroscopy: the role of natural cross-linking. Soft Matter 6:3636–3642

    Article  CAS  Google Scholar 

  55. Ramli R, Jaapar J, Singh M, Md. Yatim AH (2014) Physical properties and fatigue lifecycles of natural rubber latex gloves. Adv Environ Biol 8:2714–2722

    Google Scholar 

  56. Giglio ED, Ditaranto N, Sabbatini L (2014) Polymer surface chemistry: characterization by XPS. In: Sabbatini L (ed) Polymer surface characterization. Walter de Gruyter GmbH, Berlin

    Google Scholar 

  57. Costa MJ, Marques AM, Pastrana LM, Teixeira JA, Sillankorva SM, Cerqueira MA (2018) Physicochemical properties of alginate-based films: effect of ionic crosslinking and mannuronic and guluronic acid ratio. Food Hydrocolloids 81:442–448

    Article  CAS  Google Scholar 

  58. Peinado C, Corrales T, Catalina F, Pedrón S, Santa Quiteria VR, Parellada MD, Barrio JA, Olmos D, González-Benito J (2010) Effects of ozone in surface modification and thermal stability of SEBS block copolymers. Polym Degrad Stabil 95:975–986

    Article  CAS  Google Scholar 

  59. Nagaraj P, Sasidharan A, David V, Sambandam A (2017) Effect of cross-linking on the performances of starch-based biopolymer as gel electrolyte for dye-sensitized solar cell applications. Polymers 9:667

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Center of Excellence on Petrochemical and Materials Technology, Bangkok, Thailand; and the Petroleum and Petrochemical College, Chulalongkorn University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rathanawan Magaraphan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1 1H NMR spectrum of PMPS-g-NR in CDCl3 (DOC 211 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silakul, P., Magaraphan, R. A polymer electrolyte by ozonolysis of poly(3-(trimethoxysilyl) propyl methacrylate) grafted on natural rubber latex in colloid state and its application. Iran Polym J 28, 455–470 (2019). https://doi.org/10.1007/s13726-019-00714-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-019-00714-6

Keywords

Navigation