Skip to main content
Log in

Synthesis and characterization of collagen-based hydrogel nanocomposites for adsorption of Cd2+, Pb2+, methylene green and crystal violet

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Collagen-based hydrogel nanocomposites, as adsorbent systems in wastewater treatment, were prepared by graft copolymerization of acrylamide and maleic anhydride onto hydrolyzed collagen using ammonium persulfate as an initiator and sodium montmorillonite as a nanoclay. The properties of synthesized adsorbents were characterized by Fourier transform infrared spectroscopy, X-ray diffraction patterns, and thermogravimetric analysis method. The morphology of the optimized product was examined by scanning electron microscopy. Batch adsorption experiments were conducted as a function of contact time, initial pollutant concentration, pH and comonomer ratios to achieve maximum adsorption capacity. The hydrogel nanocomposites showed high adsorption of ~120 mg/g for Pb2+ and Cd2+ metal ions over the feed concentration of 100 mg/L. The dye adsorption of the prepared nanocomposites was 652 mg crystal violet/g at the initial concentration of 800 mg/L and 179 mg methylene green/g in 400 mg/L dye in water, respectively. The experimental data also showed that more than 90 % of the maximum adsorption capacity of the optimized sample for both metal ions and the dyes was achieved within the initial 10 min. Four non-linear isotherm models were performed to describe the adsorption capacity. The results fitted better to the Redlich–Peterson model. The adsorption kinetic data conformed well to a pseudo-second-order model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Li X, Li Y, Zhang S, Ye Z (2012) Preparation and characterization of new foam adsorbents of poly(vinyl alcohol)/chitosan composites and their removal for dye and heavy metal from aqueous solution. Chem Eng J 183:88–97

    Article  CAS  Google Scholar 

  2. Vecino X, Devesa-Rey R, Cruz JM, Moldes AB (2015) Study of the physical properties of calcium alginate hydrogel beads containing vineyard pruning waste for dye removal. Carbohydr Polym 115:129–138

    Article  CAS  Google Scholar 

  3. Wang L, Zhang J, Wang A (2011) Fast removal of methylene blue from aqueous solution by adsorption onto chitosan-g-poly (acrylic acid)/attapulgite composite. Desalination 266:33–39

    Article  CAS  Google Scholar 

  4. Cheng R, Xiang B, Li Y, Zhang M (2011) Application of dithiocarbamate-modified starch for dyes removal from aqueous solutions. J Hazard Mater 188:254–260

    Article  CAS  Google Scholar 

  5. Panic VV, Velickovic SJ (2014) Removal of model cationic dye by adsorption onto poly (methacrylic acid)/zeolite hydrogel composites: kinetics, equilibrium study and image analysis. Sep Purif Technol 122:384–394

    Article  CAS  Google Scholar 

  6. Anirudhan TS, Rijith S, Tharun AR (2010) Adsorptive removal of thorium(IV) from aqueous solutions using poly(methacrylic acid)-grafted chitosan/bentonite composite matrix: process design and equilibrium studies. Colloids Surf A 368:13–22

    Article  CAS  Google Scholar 

  7. Dalida MLP, Mariano AFV, Futalan CM, Kan CC, Tsai WC, Wan MW (2011) Adsorptive removal of Cu(II) from aqueous solutions using non-crosslinked and crosslinked chitosan-coated bentonite beads. Desalination 275:154–159

    Article  CAS  Google Scholar 

  8. Paulino AT, Belfiore LA, Kubota LT, Muniz EC, Tambourgi EB (2011) Efficiency of hydrogels based on natural polysaccharides in the removal of Cd2+ ions from aqueous solutions. Chem Eng J 168:68–76

    Article  CAS  Google Scholar 

  9. Futalan CM, Kan CC, Dalida ML, Hsien KJ, Pascua C, Wan MW (2011) Comparative and competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite. Carbohydr Polym 83:528–536

    Article  CAS  Google Scholar 

  10. Liu Y, Wang W, Wang A (2010) Adsorption of lead ions from aqueous solution by using carboxymethyl cellulose-g-poly (acrylic acid)/attapulgite hydrogel composites. Desalination 259:258–264

    Article  CAS  Google Scholar 

  11. Najafi Moghadam P, Hasanzadeh R, Khalafy J (2013) Preparation of SMA functionalized sulfanilic acid hydrogels and investigation of their metal ions adsorption behavior. Iran Polym J 22:133–142

    Article  CAS  Google Scholar 

  12. Mahdavinia GR, Iravani S, Zoroufi S, Hosseinzadeh H (2014) Magnetic and K+-cross-linked kappa-carrageenan nanocomposite beads and adsorption of crystal violet. Iran Polym J 23:335–344

    Article  CAS  Google Scholar 

  13. Mahdavinia GR, Massoudi A, Baghban A, Massoumi B (2012) Novel carrageenan-based hydrogel nanocomposites containing laponite RD and their application to remove cationic dye. Iran Polym J 21:609–619

    Article  CAS  Google Scholar 

  14. Zohuriaan-Mehr MJ, Omidian H, Doroudiani S, Kabiri K (2010) Advances in non-hygienic applications of superabsorbent hydrogel materials: a review. J Mater Sci 45:5711–5735

    Article  CAS  Google Scholar 

  15. Yu C, Yun-fei L, Huan-lin T, Hui-min T (2010) Study of carboxymethyl chitosan based polyampholyte superabsorbent polymer. I: optimization of synthesis conditions and pH sensitive property study of carboxymethyl chitosan-g-poly(acrylic acid-co-dimethyl diallylammonium chloride) superabsorbent polymer. Carbohydr Polym 81:365–371

    Article  Google Scholar 

  16. You JO, Auguste DT (2010) Conductive, physiologically responsive hydrogels. Langmuir 26:4607–4612

    Article  CAS  Google Scholar 

  17. Ma D, Yang G, Li Q, Wang K, Chen B, Kennedy JF, Nie J (2010) Injectable hydrogels based on chitosan derivative/polyethylene glycol dimethacrylate/N,N-dimethylacrylamide as bone tissue engineering matrix. Carbohydr Polym 79:620–627

    Article  CAS  Google Scholar 

  18. Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638–1649

    Article  CAS  Google Scholar 

  19. Mahdavinia GR, Asgari A (2013) Synthesis of kappa-carrageenan-g-poly(acrylamide)/sepiolite nanocomposite hydrogels and adsorption of cationic dye. Polym Bull 70:2451–2470

    Article  CAS  Google Scholar 

  20. Mandal B, Ray SK (2014) Swelling, diffusion, network parameters and adsorption properties of IPN hydrogel of chitosan and acrylic copolymer. Mater Sci Eng C 44:132–143

    Article  CAS  Google Scholar 

  21. Bagheri Marandi G, Baharloui M, Kurdtabar M, Mahmoodpoor Sharabian L, Mojarrad MA (2014) Hydrogel with high laponite content as nanoclay: swelling and cationic dye adsorption properties. Res Chem Intermed. doi:10.1007/s11164-014-1797-0

    Google Scholar 

  22. Bagheri Marandi G, Peyvand Kermani Z, Kurdtabar M (2013) Fast and efficient removal of cationic dyes from aqueous solution by collagen-based hydrogel nanocomposites. Polym Plast Technol Eng 52:310

    Article  Google Scholar 

  23. Liu H, Zhen M, Wu R (2007) Ionic-strength- and pH-responsive poly[acrylamide-co-(maleic acid)] hydrogel nanofibers. Macromol Chem Phys 208:874–880

    Article  CAS  Google Scholar 

  24. Pourjavadi A, Kurdtabar M, Mahdavinia GR, Hosseinzadeh H (2006) Synthesis and super-swelling behavior of a novel protein based superabsorbent hydrogel. Polym Bull 57:813–824

    Article  CAS  Google Scholar 

  25. Salama A, Shukry N, El-Sakhawy M (2015) Carboxymethyl cellulose-g-poly (2-(dimethylamino) ethyl methacrylate) hydrogel as adsorbent for dye removal. Int J Biol Macromol 73:72–75

    Article  CAS  Google Scholar 

  26. Yuwei C, Jianlong W (2011) Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu(II) removal. Chem Eng J 168:286–292

    Article  Google Scholar 

  27. Milosavljević NB, Ristić MÐ, Perić-Grujić AA, Filipović JM, Štrbac SB, Rakočević ZL, Kalagasidis Krušić MT (2010) Hydrogel based on chitosan, itaconic acid and methacrylic acid as adsorbent of Cd2+ ions from aqueous solution. Chem Eng J 165:554–562

    Article  Google Scholar 

  28. Hameed BH, Krishni RR, Sata SA (2009) A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions. J Hazard Mater 162:305–311

    Article  CAS  Google Scholar 

  29. Zheng Y, Hua S, Wang A (2010) Adsorption behavior of Cu2+ from aqueous solutions onto starch-g-poly (acrylic acid)/sodium humate hydrogels. Desalination 263:170–175

    Article  CAS  Google Scholar 

  30. Kumar KV (2007) Optimum sorption isotherm by linear and non-linear methods for malachite green onto lemon peel. Dyes Pig 74:595–597

    Article  CAS  Google Scholar 

  31. Treybal RE (1968) Mass transfer operations, 2nd edn. McGraw Hill, New York

    Google Scholar 

  32. Ho YS, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124

    Article  CAS  Google Scholar 

  33. Anirudhan TS, Suchithra PS, Radhakrishnan PG (2009) Synthesis and characterization of humic acid immobilized-polymer/bentonite composites and their ability to adsorb basic dyes from aqueous solutions. Appl Clay Sci 43:336–342

    Article  CAS  Google Scholar 

  34. Lagergren S (1898) About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsademiens Handlingar 24:1–39

    Google Scholar 

  35. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  36. Özkahraman B, Acar I, Emik S (2011) Removal of cationic dyes from aqueous solutions with poly(N-isopropylacrylamide-co-itaconic acid) hydrogels. Polym Bull 66:551–570

    Article  Google Scholar 

  37. Pourjavadi A, Nazari M, Hosseini SH (2015) Synthesis of magnetic graphene oxide-containing nanocomposite hydrogels for adsorption of crystal violet from aqueous solution. RSC Adv 5:32263–32271

    Article  CAS  Google Scholar 

  38. Zhou Y, Zhang M, Wang X, Huang Q, Min Y, Ma T, Niu J (2014) Removal of crystal violet by a novel cellulose-based adsorbent: comparison with native cellulose. Ind Eng Chem Res 53:5498–5506

    Article  CAS  Google Scholar 

  39. Zhou Y, Fu S, Zhang L, Zhan H, Levit MV (2014) Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II). Carbohydr Polym 101:75–82

    Article  CAS  Google Scholar 

  40. Xu R, Zhou G, Tang Y, Chu L, Liu C, Zeng Z, Luo S (2015) New double network hydrogel adsorbent: highly efficient removal of Cd(II) and Mn(II) ions in aqueous solution. Chem Eng J 275:179–188

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by budget of Research Projects of Karaj Branch, Islamic Azad University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kurdtabar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurdtabar, M., Peyvand Kermani, Z. & Bagheri Marandi, G. Synthesis and characterization of collagen-based hydrogel nanocomposites for adsorption of Cd2+, Pb2+, methylene green and crystal violet. Iran Polym J 24, 791–803 (2015). https://doi.org/10.1007/s13726-015-0368-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-015-0368-6

Keywords

Navigation