Skip to main content

Advertisement

Log in

Polymer-functionalized carbon nanotubes in cancer therapy: a review

  • Review
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The increasing importance of nanotechnology in the field of biomedical applications has encouraged the development of new nanomaterials endowed with multiple functions. Novel nanoscale drug delivery systems with diagnostic, imaging and therapeutic properties hold many promises for the treatment of different types of diseases, including cancer, infection and neurodegenerative syndromes. Carbon nanotubes (CNTs) are both low-dimensional sp2 carbon nanomaterials exhibiting many unique physical and chemical properties that are interesting in a wide range of areas including nanomedicine. Since 2004, CNTs have been extensively explored as drug delivery carriers for the intracellular transport of chemotherapy drugs, proteins and genes. In vivo cancer treatment with CNTs has been demonstrated in animal experiments by several different groups. Herein, the recent works on anticancer drug delivery systems based on carbon nanotubes are reviewed and some of more specific and important novel drug delivery devices are discussed in detail. This paper focuses on modifications of CNTs by polymers through covalent and non-covalent attachments: two different methods as critical steps in preparation of anticancer drug delivery systems from CNTs. In this respect the in vivo and in vitro behaviors and toxicity of the CNTs modified by polymers are summarized as well. Well-functionalized CNTs did not show any significant toxicity after injection into mice. Moreover, administration and excretion of CNT-based nanocarriers are discussed. It was concluded that future development of CNT-based nanocarriers may bring novel opportunities to cancer diagnosis and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Movahedi S, Adeli M, Kakanejadifard A, Maleki M, Sadeghizadeh M, Bani F (2013) Edge-functionalization of graphene by polyglycerol; a way to change its flat topology. Polymer 54:2917–2925

    Article  CAS  Google Scholar 

  2. Hosono N, Gillissen MAJ, Li Y, Palmans ARA (2013) Orthogonal self-assembly in folding block copolymers. J Am Chem Soc 135:501–510

    Article  CAS  Google Scholar 

  3. Llanes-Pallas A, Yoosaf K, Traboulsi H, Mohanraj J, Seldrum T, Dumont J, Minoia A, Lazzaroni R, Armaroli N, Bonifazi D (2011) Modular engineering of H-bonded supramolecular polymers for reversible functionalization of carbon nanotubes. J Am Chem Soc 133:15412–15424

    Article  CAS  Google Scholar 

  4. Sun JT, Hong CY, Pan CY (2011) Surface modification of carbon nanotubes with dendrimers or hyperbranched polymers. Polym Chem 2:998–1007

    Article  CAS  Google Scholar 

  5. Goya GF, Grazu V, Ibarra MR (2008) Magnetic nanoparticles for cancer therapy. Current Nanosci 4:1–16

    Article  CAS  Google Scholar 

  6. Algar WR, Prasuhn DE, Stewart MH, Jennings TL, Blanco-Canosa JB, Dawson PE, Medintz IL (2011) The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. Bioconjugate Chem 22:825–858

    Article  CAS  Google Scholar 

  7. Jokerst JV, Gambhir SS (2011) Molecular imaging with theranostic nanoparticles. Acc Chem Res 44:1050–1060

    Article  CAS  Google Scholar 

  8. Lee JE, Lee N, Kim T, Kim J, Hyeon T (2011) Multifuctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res 44:893–902

    Article  CAS  Google Scholar 

  9. Rosenholm JM, Sahlgren C, Lindén M (2010) Toward multifunctional targeted drug delivery systems using mesoporous silica nanoparticles—opportunities & challenges. Nanoscale 2:1870–1883

    Article  CAS  Google Scholar 

  10. Slowing II, Vivero-Escoto JL, Wu CW, Lin VS-Y (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60:1278–1288

    Article  CAS  Google Scholar 

  11. Liu Z, Robinson JT, Tabakman SM, Yang K, Dai H (2011) Carbon materials for drug delivery and cancer therapy. Mater Today 14:316–323

    Article  CAS  Google Scholar 

  12. Lamanna G, Battigelli A, Ménard-Moyon C, Bianco A (2012) Multifunctionalized carbon nanotubes as advanced multimodal nanomaterials for biomedical applications. Nanotechnol Rev 1:17–29

    Article  CAS  Google Scholar 

  13. Zhang S, Yang K, Liu Z (2010) Carbon nanotubes for in vivo cancer nanotechnology. Sci China Chem 53:2217–2225

    Article  CAS  Google Scholar 

  14. Sayes CM, Liang F, Hudson JL, Mendez J, Guo W, Beach JM, Moore VC, Doyle CD, West JL, Billups WE, Ausman KD, Colvin VL (2006) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161:135–142

    Article  CAS  Google Scholar 

  15. Kostarelos K, Bianco A, Prato M (2009) Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol 4:627–633

    Article  CAS  Google Scholar 

  16. Liu Z, Tabakman SM, Chen Z, Dai H (2009) Preparation of carbon nanotube bioconjugates for biomedical applications. Nat Protoc 4:1372–1382

    Article  CAS  Google Scholar 

  17. Ago H, Petritsch K, Shaffer MSP, Windle AH, Friend RH (1999) Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv Mater 11:1281–1285

    Article  CAS  Google Scholar 

  18. Lin Y, Meziani MJ, Sun YP (2007) Functionalized carbon nanotubes for polymeric nanocomposites. J Mater Chem 17:1143–1148

    Article  CAS  Google Scholar 

  19. Javey A, Guo J, Wang Q, Lundstrom M, Dai H (2003) Ballistic carbon nanotube field-effect transistors. Nature 424:654–657

    Article  CAS  Google Scholar 

  20. Cao Q, Rogers JA (2008) Random networks and aligned arrays of single-walled carbon nanotubes for electronic device applications. Nano Res 1:259–272

    Article  CAS  Google Scholar 

  21. Shahrokhian S, Rastgar S, Amini MK, Adeli M (2012) Fabrication of a modified electrode based on Fe3O4NPs/MWCNT nanocomposite: application to simultaneous determination of guanine and adenine in DNA. Bioelectrochemistry 86:78–86

    Article  CAS  Google Scholar 

  22. Fan SS, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai H (1999) Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283:512–514

    Article  CAS  Google Scholar 

  23. Cheng Y, Zhou O (2003) Electron field emission from carbon nanotubes. CR Physique 4:1021–1033

    Article  CAS  Google Scholar 

  24. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379

    Article  CAS  Google Scholar 

  25. Liu C, Chen Y, Wu CZ, Xu ST, Cheng HM (2010) Hydrogen storage in carbon nanotubes revisited. Carbon 48:452–455

    Article  CAS  Google Scholar 

  26. Adeli M, Soleyman R, Beiranvand Z, Madani F (2013) Carbon nanotubes in cancer therapy: a more precise look at the role of carbon nanotube–polymer interactions. Chem Soc Rev 42:5231–5256

    Article  CAS  Google Scholar 

  27. Bianco A, Kostarelos K, Partidos CD, Prato M (2005) Biomedical applications of functionalized carbon nanotubes. Chem Commun 5:571–577

    Article  CAS  Google Scholar 

  28. Adeli M, Ashiri M, Khodadadi B, Sasanpour P (2013) Tumor-targeted drug delivery systems based on supramolecular interactions between iron oxide–carbon nanotubes PAMAM–PEG–PAMAM linear-dendritic copolymers. J Iran Chem Soc 10:701–708

    Article  CAS  Google Scholar 

  29. Liu Z, Sun X, Nakayama N, Dai H (2007) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1:50–56

    Article  CAS  Google Scholar 

  30. Kar T, Bettinger HF, Scheiner S, Roy AK (2008) Noncovalent π–π stacking and CH–π interactions of aromatics on the surface of single-wall carbon nanotubes. J Phys Chem C 112:20070–20075

    Article  CAS  Google Scholar 

  31. Liu Z, Sun X, Nakayama N, Dai H (2010) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 4:7726

    Article  CAS  Google Scholar 

  32. Li X, Fan Y, Watari F (2010) Current investigations into carbon nanotubes for biomedical application. Biomed Mater 5:022001

    Article  CAS  Google Scholar 

  33. Zhao X, Liu R (2012) Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and biomacromolecule levels. Environ Int 40:244–256

    Article  CAS  Google Scholar 

  34. Chen Z, Ma L, Liu Y, Chen C (2012) Applications of functionalized fullerenes in tumor theranostics. Theranostics 2:238–250

    Article  CAS  Google Scholar 

  35. Yang M, Meng J, Cheng X, Lei J, Guo H, Zhang W, Kong H, Xu H (2012) Multi-walled carbon nanotubes interact with macrophages and influence tumor progression and metastasis. Theranostics 2:258–270

    Article  CAS  Google Scholar 

  36. Usui Y, Aoki K, Narita N, Murakami N, Nakamura I, Nakamura K, Ishigaki N, Yamazaki H, Horiuchi H, Kato H, Taruta S, Kim YA, Endo M, Saito N (2008) Carbon nanotubes with high bone–tissue compatibility and bone-formation acceleration effects. Small 4:240–246

    Article  CAS  Google Scholar 

  37. Singh RP, Das M, Thakare V, Jain S (2012) Functionalization density dependent toxicity of oxidized multiwalled carbon nanotubes in a murine macrophage cell line. Chem Res Toxicol 25:2127–2137

    Article  CAS  Google Scholar 

  38. Murray AR, Kisin E, Leonard SS, Young SH, Kommineni C, Kaganc VE, Castranova V, Shvedova AA (2009) Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicology 257:161–171

    Article  CAS  Google Scholar 

  39. Ryman-Rasmussen JP, Cesta MF, Brody AR, Shipley-Phillips JK, Everitt J, Tewksbury EW, Moss OR, Wong BA, Dodd DE, Andersen E, Bonner JC (2009) Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol 4:747–751

    Article  CAS  Google Scholar 

  40. Porter AE, Gass M, Muller K, Skepper JN, Midgley PA, Welland M (2007) Direct imaging of single-walled carbon nanotubes in cells. Nat Nanotechnol 2:713–717

    Article  CAS  Google Scholar 

  41. Yang ST, Wang X, Jiaet G (2008) Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol Lett 181:182–189

    Article  CAS  Google Scholar 

  42. Renier A, Daubriac J, Jaurand MF (2009) Mesothelioma: do asbestos and carbon nanotubes pose the same health risk? Part Fibre Toxicol 6:16–24

    Article  CAS  Google Scholar 

  43. Koyama S, Kim YM, Hayashi T, Takeuchi K, Fujii C, Tsukahara T, Endo M (2009) In vivo immunological toxicity in mice of carbon nanotubes with impurities. Carbon 47:1365–1372

    Article  CAS  Google Scholar 

  44. Stern ST, McNeil SE (2008) Nanotechnology safety concerns revisited. Toxicol Sci 101:4–21

    Article  CAS  Google Scholar 

  45. Chen J, Kuno A, Matsuo M, Tsukada T, Tamura T, Osato K, Shana JY, Munekanea F, Kimc YA, Hayashic T, Endo M (2008) Removal of entrapped iron compounds from isothermally treated catalytic chemical vapor deposition derived multi-walled carbon nanotubes. Carbon 46:391–396

    Article  CAS  Google Scholar 

  46. Schafer FQ, Qian SY, Buettner GR (2000) Iron and free radical oxidations in cell membranes. Cell Mol Biol 46:657–662

    CAS  Google Scholar 

  47. Shvedova AA, Castranova V, Mercer R, Schwegler-Berry D, Kisin ER, Osipov AN, Potapovich AI, Konduru NV, Tyurin VA, Tyurina YY, Kagan VE (2006) Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol Lett 165:88–100

    Article  CAS  Google Scholar 

  48. Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383

    Article  CAS  Google Scholar 

  49. Tian F, Cui D, Schwarz H, Estrada GG, Kobayashi H (2006) Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol In Vitro 20:1202–1212

    Article  CAS  Google Scholar 

  50. Liu D, Wang Z, Wang L, Cuschieri A (2012) Different cellular response mechanisms contribute to the length-dependent cytotoxicity of multi-walled carbon nanotubes. Nanoscale Res Lett 7:361–370

    Article  CAS  Google Scholar 

  51. Thurnherr T, Brandenberger C, Fischer K, Diener L, Manser P, Kaiser P, Rothen-Rutishauser B (2011) A comparison of acute and long-term effects of industrial multiwalled carbon nanotubes on human lung and immune cells in vitro. Toxicol Lett 200:176–186

    Article  CAS  Google Scholar 

  52. Yang S-T, Luo J, Zhou Q, Wang H (2012) Pharmacokinetics, metabolism and toxicity of carbon nanotubes for biomedical purposes. Theranostics 2:271–282

    Article  CAS  Google Scholar 

  53. Teeguarden JG, Hinderliter PM, Orr G, Thrall BD, Pounds JG (2007) Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci 95:300–312

    Article  CAS  Google Scholar 

  54. Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170

    Article  CAS  Google Scholar 

  55. Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Roth S, Bruinink A, Krumeich F (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168:121–131

    Article  CAS  Google Scholar 

  56. Cui H-F, Sandeep VK, Al-Rubeaan K, Luong JHT, Sheu F-S (2010) Interfacing carbon nanotubes with living mammalian cells and cytotoxicity issues. Chem Res Toxicol 23:1131–1147

    Article  CAS  Google Scholar 

  57. Im JS, Bai B, Lee YS (2010) The effect of carbon nanotubes on drug delivery in an electro-sensitive transdermal drug delivery system. Biomaterials 31:1414–1419

    Article  CAS  Google Scholar 

  58. Guo J, Zhang X, Li Q, Li W (2007) Biodistribution of functionalized multiwall carbon nanotubes in mice. Nucl Med Biol 34:579–583

    Article  CAS  Google Scholar 

  59. Vittorio O, Raffa V, Cuschieri A (2009) Influence of purity and surface oxidation on cytotoxicity of multi-wall carbon nanotubes with human neuroblastoma cells. Nanomedicine 5:424–431

    Article  CAS  Google Scholar 

  60. Huczko A, Lange H (2001) Carbon nanotubes: experimental evidence for a null risk of skin irritation and allergy. Fuller Sci Technol 9:247–250

    Article  CAS  Google Scholar 

  61. Huczko A, Lange H, Calko E, Grubek-Jaworska H, Droszcz P (2001) Physiological testing of carbon nanotubes: are they asbestos-like? Fuller Sci Technol 9:251–254

    Article  CAS  Google Scholar 

  62. Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Webb TR (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77:117–125

    Article  CAS  Google Scholar 

  63. Lam CW, James JT, McCluskey R, Hunter RL (2003) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134

    Article  Google Scholar 

  64. Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V (2004) Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health A 67:87–107

    Article  CAS  Google Scholar 

  65. Yokoyama A, Sato Y, Nodasaka Y, Yamamoto S, Kawasaki T, Shindoh M, Kohgo T, Akasaka T, Uo M, Watari F, Tohji K (2005) Biological behavior of hat-stacked carbon nanofibers in the subcutaneous tissue in rats. Nano Lett 5:157–161

    Article  CAS  Google Scholar 

  66. Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, Arras M, Fonseca A, Nagy JB, Lison D, Lacerda L, Bianco A, Prato M, Kostarelos K (2006) Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv Drug Deliv Rev 58:1460–1470

    Article  CAS  Google Scholar 

  67. Singh P, Kumar J, Toma FM, Raya J (2009) Synthesis and characterization of nucleobase carbon nanotube hybrids. J Am Chem Soc 131:13555–13562

    Article  CAS  Google Scholar 

  68. Shen M, Wang SH, Shi X, Chen X, Huang Q (2009) Polyethyleneimine-mediated functionalization of multiwalled carbon nanotubes: synthesis, characterization, and in vitro toxicity assay. J Phys Chem C 113:3150–3156

    Article  CAS  Google Scholar 

  69. Zhang K, Lim JY, Choi HJ (2009) Amino functionalization and characteristics of multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposite. Diam Relat Mater 18:316–318

    Article  CAS  Google Scholar 

  70. Chaudhuri P, Soni S, Sengupta S (2010) Single-walled carbon nanotube-conjugated chemotherapy exhibits increased therapeutic index in melanoma. Nanotechnology 21:025102

    Article  CAS  Google Scholar 

  71. Lay CL, Liu HQ, Tan HR, Liu Y (2010) Delivery of paclitaxel by physically loading onto poly(ethylene glycol) (PEG)-graft-carbon nanotubes for potent cancer therapeutics. Nanotechnology 21:065101

    Article  CAS  Google Scholar 

  72. Guo Y, Shi D, Cho H, Dong Z, Kulkarni A, Pauletti GM, Wang W, Lian J, Liu W, Ren L, Zhang Q, Liu G, Huth C, Wang L, Ewing RC (2008) In vivo imaging and drug storage by quantumdot-conjugated carbon nanotubes. Adv Funct Mater 18:2489–2497

    Article  CAS  Google Scholar 

  73. Yang D, Yang F, Hu J, Long J, Wang C, Fu D, Ni Q (2009) Hydrophilic multi-walled carbon nanotubes decorated with magnetite nanoparticles as lymphatic targeted drug delivery vehicles. Chem Commun 29:4447–4449

    Google Scholar 

  74. Sobhani Z, Dinarvand R, Atyabi F, Ghahremani M, Adeli M (2011) Increased paclitaxel cytotoxicity against cancer cell lines using a novel functionalized carbon nanotube. Int J Nanomed 6:705–719

    CAS  Google Scholar 

  75. Shi S, Wang SH, Shen M, Antwerp ME, Chen X, Li C, Petersen EJ, Huang Q, Weber WJ, Baker JR (2009) Multifunctional dendrimer-modified multiwalled carbon nanotubes: synthesis, characterization, and in vitro cancer cell targeting and imaging. Biomacromolecules 10:1744–1750

    Article  CAS  Google Scholar 

  76. Liu Z, Cai W, He L, Nakayama-Ratchford N, Chen K, Sun X, Chen X, Dai H (2007) In vivo biodistribution and highly efficient tumor targeting of carbon nanotubes in mice. Nat Nanotechnol 2:47–52

    Article  CAS  Google Scholar 

  77. Feazell RP, Nakayama-Ratchford N, Dai H, Lippard SJ (2007) Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J Am Chem Soc 129:8438–8439

    Article  CAS  Google Scholar 

  78. Liu Z, Fan AC, Rakhra K, Sherlock S, Goodwin A, Chen X, Yang Q, Felsher DW, Dai H (2009) Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew Chem Int Ed 48:7668–7672

    Article  CAS  Google Scholar 

  79. Zhang X, Meng L, Lu Q, Fei Z, Dyson PJ (2009) Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials 30:6041–6047

    Article  CAS  Google Scholar 

  80. Ali-Boucetta H, Al-Jamal KT, McCarthy D, Prato M, Bianco A, Kostarelos K (2008) Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics. Chem Commun 4:459–461

    Google Scholar 

  81. Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, Dai H (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68:6652–6660

    Article  CAS  Google Scholar 

  82. Adeli M, Hakimpoor F, Ashiri M, Kabiri R, Bavadi M (2011) Anticancer drug delivery systems based on noncovalent interactions between carbon nanotubes and linear-dendritic copolymers. Soft Matter 7:4062–4070

    Article  CAS  Google Scholar 

  83. Mehdipoor E, Adeli M, Bavadi M, Sasanpour P, Rashidian B (2011) A possible anticancer drug delivery system based on carbon nanotube dendrimer hybrid nanomaterials. J Mater Chem 21:15456–15464

    Article  CAS  Google Scholar 

  84. Chen ML, He YJ, Chen XW, Wang JH (2012) Quantum dots conjugated with Fe3O4 filled carbon nanotubes for cancer-targeted imaging and magnetically guided drug delivery. Langmuir 28:16469–16476

    Article  CAS  Google Scholar 

  85. Yang Z, Zhang Y, Yang Y, Sun L, Han D, Li H, Wang C (2010) Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomedicine 6:427–441

    Article  CAS  Google Scholar 

  86. Ji S, Liu C, Zhang B, Yang F, Xu J, Long J, Jin C, Fu D, Ni Q, Yu X (2010) Carbon nanotubes in cancer diagnosis and therapy: a review. Biochim Biophys Acta 1806:29–35

    CAS  Google Scholar 

  87. Li JJ, Yang F, Guo GQ, Yang D, Long J, Fu DL, Luc J, Wang CC (2010) Preparation of biocompatible multi-walled carbon nanotubes as potential tracers for sentinel lymph node. Polym Int 59:169–174

    Article  CAS  Google Scholar 

  88. Schipper ML, Nakayama-Ratchford N, Davis CR, Shi KNW, Chu P, Liu Z, Sun X, Dai H, Gambhir SS (2008) A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat Nanotechnol 3:216–221

    Article  CAS  Google Scholar 

  89. Cheng J, Fernando KA, Veca LM, Sun YP, Lamond AI, Lam YW, Cheng SH (2008) Reversible accumulation of PEGylated single-walled carbon nanotubes in the mammalian nucleus. ACS Nano 2:2085–2094

    Article  CAS  Google Scholar 

  90. Kolosnjaj-Tabi J, Hartman KB, Boudjemaa S, Ananta JS, Morgant G, Szwarc H, Wilson LJ, Moussa F (2010) In vivo behavior of large doses of ultrashort and full-length single-walled carbon nanotubes after oral and intraperitoneal administration to Swiss mice. ACS Nano 4:1481–1492

    Article  CAS  Google Scholar 

  91. Thakare VS, Das M, Jain AK, Patil S, Jain S (2010) Carbon nanotubes in cancer theragnosis. Nanomedicine 5:1277–1301

    Article  CAS  Google Scholar 

  92. Kagan VE, Konduru NV, Feng W, Allen BL, Conroy J, Volkov Y, Belikova NA, Yanamala N, Kapralov A, Tyurina YY, Shi J, Kisin ER, Murray AR, Franks J, Stolz D, Gou P, Klein-Seetharaman J, Fadeel B, Star A, Shvedova AA (2010) Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol 5:554–559

    Article  CAS  Google Scholar 

  93. Karousis K, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110:5366–5397

    Article  CAS  Google Scholar 

  94. Tian Z, Shi Y, Yin M, Shen H, Jia N (2011) Functionalized multiwalled carbon nanotubes anticancer drug carriers: synthesis, targeting ability and antitumor activity. Nano Biomed Eng 3:157–162

    Google Scholar 

  95. Liu A, Sun K, Yang J, Zhao D (2008) Toxicological effects of multi-wall carbon nanotubes in rats. J Nanopart Res 10:1303–1307

    Article  CAS  Google Scholar 

  96. Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A, Leapman RD, Weigert R, Gutkind JS, Rusling JF (2009) Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3:307–316

    Article  CAS  Google Scholar 

  97. Chaudhuri P, Harfouche R, Soni S, Sengupta S (2010) Shape effect of carbon nanovectors on angiogenesis. ACS Nano 4:574–582

    Article  CAS  Google Scholar 

  98. Liu Z, Davis C, Cai W, He L, Chen X, Dai H (2008) Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci USA 105:1410–1415

    Article  Google Scholar 

  99. Yang ST, Wang X, Jia G, Gu Y, Wang T, Nie H (2008) Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol Lett 101:181–182

    Google Scholar 

  100. Adeli M, Mehdipour E, Beyranvand S (2013) Preparation of long supramolecular carbon nanotubes. New J Chem 37:1871–1873

    Article  CAS  Google Scholar 

  101. Adeli M, Beyranvand S, Kabiri R (2013) Preparation of hybrid nanomaterials by supramolecular interactions between dendritic polymers and carbon nanotubes. Polym Chem 4:669–674

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Adeli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eskandari, M., Hosseini, S.H., Adeli, M. et al. Polymer-functionalized carbon nanotubes in cancer therapy: a review. Iran Polym J 23, 387–403 (2014). https://doi.org/10.1007/s13726-014-0228-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-014-0228-9

Keywords

Navigation