Skip to main content

Advertisement

Log in

Nanomaterials for Wound Healing

  • Wound Care and Healing (A Friedman, Section Editor)
  • Published:
Current Dermatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Despite the emergence of various new wound care products, millions of people continue to suffer from complications associated with acute and chronic wounds. Nanomaterials offer a variety of strategies to accelerate wound closure and promote appropriate progression through the stages of healing, which will be detailed in this review.

Recent Findings

The small size of nanomaterials enhances penetration and permeation of tissues and lends a large surface area-to-volume ratio, ideal for topical drug delivery. Furthermore, nanofibers may be utilized to create nanoscaffold wound dressings that simulate the topographic appearance of endogenous extracellular matrix, thereby stimulating wound reepithelialization and collagen production.

Summary

Together, nanomaterials offer many approaches to reduce the morbidity associated with acute and chronic wounds, as demonstrated by a substantial body of pre-clinical data. Future investigations should aim to address the paucity of human clinical trial data, essential for translating wound-healing benefits from bench to bedside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Tricco AC, Cogo E, Isaranuwatchai W, et al. A systematic review of cost-effectiveness analyses of complex wound interventions reveals optimal treatments for specific wound types. BMC Med. 2015;13(1):1.

    Article  Google Scholar 

  2. Braun LR, Lamel SA, Richmond NA, Kirsner RS. Topical timolol for recalcitrant wounds. JAMA Dermatol. 2013;149(12):1400–2.

    Article  PubMed  Google Scholar 

  3. Fang RC, Galiano RD. A review of becaplermin gel in the treatment of diabetic neuropathic foot ulcers. Biologics. 2008;2(1):1.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Pereira RF, Bartolo PJ. Traditional therapies for skin wound healing. Adv Wound Care. 2014.

  5. National nanotechnology initiative: Frequently asked questions. Http://www.Nano.Gov/nanotech-101/nanotechnology-facts. Accessed on may 23, 2016.

  6. Kim BY, Rutka JT, Chan WC. Nanomedicine. N Engl J Med. 2010;363(25):2434–43.

    Article  CAS  PubMed  Google Scholar 

  7. Alvarez-Román R, Naik A, Kalia Y, Guy RH, Fessi H. Skin penetration and distribution of polymeric nanoparticles. J Control Release. 2004;99(1):53–62.

    Article  CAS  PubMed  Google Scholar 

  8. Zhou W, Wang Y, Jian J, Song S. Self-aggregated nanoparticles based on amphiphilic poly(lactic acid)-grafted-chitosan copolymer for ocular delivery of amphotericin b. Int J Nanomedicine. 2013;8:3715.

    PubMed  PubMed Central  Google Scholar 

  9. Janát-Amsbury M, Ray A, Peterson C, Ghandehari H. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur J Pharm Biopharm. 2011;77(3):417–23.

    Article  CAS  PubMed  Google Scholar 

  10. Krausz AE, Adler BL, Cabral V, et al. Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine. 2015;11(1):195–206.

    CAS  PubMed  Google Scholar 

  11. Cheirmadurai K, Thanikaivelan P, Murali R. Highly biocompatible collagen–delonix regia seed polysaccharide hybrid scaffolds for antimicrobial wound dressing. Carbohydr Polym. 2016;137:584–93.

    Article  CAS  PubMed  Google Scholar 

  12. Shahverdi S, Hajimiri M, Esfandiari MA, et al. Fabrication and structure analysis of poly (lactide-co-glycolic acid)/silk fibroin hybrid scaffold for wound dressing applications. Int J Pharm. 2014;473(1):345–55.

    Article  CAS  PubMed  Google Scholar 

  13. Wu J, Zheng Y, Song W, et al. In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr Polym. 2014;102:762–71.

    Article  CAS  PubMed  Google Scholar 

  14. Chiara G, Letizia F, Luca L, et al. Nanoparticle therapies for wounds and ulcer healing. Nanomedicine in drug delivery: CRC Press; 2013:143–86.

  15. Stojadinovic A, Carlson JW, Schultz GS, Davis TA, Elster EA. Topical advances in wound care. Gynecol Oncol. 2008;111(2):S70–80.

    Article  PubMed  Google Scholar 

  16. Nijhawan RI, Smith LA, Mariwalla K. Mohs surgeons’ use of topical emollients in postoperative wound care. Dermatol Surg. 2013;39(8):1260–3.

    Article  CAS  PubMed  Google Scholar 

  17. Morales-Burgos A, Loosemore MP, Goldberg LH. Postoperative wound care after dermatologic procedures: a comparison of 2 commonly used petrolatum-based ointments. J Drugs Dermatol. 2013;12(2):163–4.

    PubMed  Google Scholar 

  18. Gardin C, Ferroni L, Lancerotto L, et al. Nanoparticle therapies for wounds and ulcer healing. Nanomedicine Drug Deliv. 2013:143.

  19. Bucalo B, Eaglstein WH, Falanga V. Inhibition of cell proliferation by chronic wound fluid. Wound Repair Regen. 1993;1(3):181–6.

    Article  CAS  PubMed  Google Scholar 

  20. Lee JS, Murphy WL. Functionalizing calcium phosphate biomaterials with antibacterial silver particles. Adv Mater. 2013;25(8):1173–9.

    Article  CAS  PubMed  Google Scholar 

  21. Kim K-J, Sung WS, Moon S-K, Choi J-S, Kim JG, Lee DG. Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol. 2008;18(8):1482–4.

    CAS  PubMed  Google Scholar 

  22. Gaikwad S, Ingle A, Gade A, et al. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomedicine. 2013;8:4303.

    PubMed  PubMed Central  Google Scholar 

  23. Cameron P, Gaiser BK, Bhandari B, Bartley PM, Katzer F, Bridle H. Silver nanoparticles decrease the viability of Cryptosporidium parvum oocysts. Appl Environ Microbiol. 2015: AEM. 02806–02815.

  24. Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet J-B. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother. 2008;61(4):869–76.

    Article  CAS  PubMed  Google Scholar 

  25. Lambadi PR, Sharma TK, Kumar P, et al. Facile biofunctionalization of silver nanoparticles for enhanced antibacterial properties, endotoxin removal, and biofilm control. Int J Nanomedicine. 2015;10:2155.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Singh BR, Singh BN, Singh A, Khan W, Naqvi AH, Singh HB. Mycofabricated biosilver nanoparticles interrupt pseudomonas aeruginosa quorum sensing systems. Sci Rep. 2015; 5.

  27. Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine. 2007;3(2):168–71.

    CAS  PubMed  Google Scholar 

  28. Xiu Z-m, Zhang Q-b, Puppala HL, Colvin VL, Alvarez PJ. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012;12(8):4271–5.

    Article  CAS  PubMed  Google Scholar 

  29. Brown AN, Smith K, Samuels TA, Lu J, Obare SO, Scott ME. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl Environ Microbiol. 2012;78(8):2768–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Franková J, Pivodová V, Vágnerová H, Juráňová J, Ulrichová J. Effects of silver nanoparticles on primary cell cultures of fibroblasts and keratinocytes in a wound-healing model. J Appl Biomater Funct Mater. 2016; 14(2).

  31. Tian J, Wong KK, Ho CM, et al. Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem. 2007;2(1):129–36.

    Article  CAS  PubMed  Google Scholar 

  32. GhavamiNejad A, Rajan Unnithan A, Ramachandra Kurup Sasikala A, et al. Mussel-inspired electrospun nanofibers functionalized with size-controlled silver nanoparticles for wound dressing application. ACS Appl Mater Interfaces. 2015;7(22):12176–83.

    Article  CAS  PubMed  Google Scholar 

  33. Lee D, Cohen RE, Rubner MF. Antibacterial properties of ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir. 2005;21(21):9651–9.

    Article  CAS  PubMed  Google Scholar 

  34. Liu J, Sonshine DA, Shervani S, Hurt RH. Controlled release of biologically active silver from nanosilver surfaces. ACS Nano. 2010;4(11):6903–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16(10):2346.

    Article  CAS  PubMed  Google Scholar 

  36. Zhou Y, Chen R, He T, et al. Biomedical potential of ultrafine ag/agcl nanoparticles coated on graphene with special reference to antimicrobial performances and burn wound healing. ACS Appl Mater Interfaces. 2016. This study presents silver-silver chloride nanoparticles that exhibit antimicrobial activity and enhance wound healing in mouse models independently of silver ion release.

  37. Gu H, Ho P, Tong E, Wang L, Xu B. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett. 2003;3(9):1261–3.

    Article  CAS  Google Scholar 

  38. Zharov VP, Mercer KE, Galitovskaya EN, Smeltzer MS. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys J. 2006;90(2):619–27.

    Article  CAS  PubMed  Google Scholar 

  39. Norman RS, Stone JW, Gole A, Murphy CJ, Sabo-Attwood TL. Targeted photothermal lysis of the pathogenic bacteria, pseudomonas aeruginosa, with gold nanorods. Nano Lett. 2008;8(1):302–6.

    Article  CAS  PubMed  Google Scholar 

  40. Gil-Tomás J, Tubby S, Parkin IP, et al. Lethal photosensitisation of Staphylococcus aureus using a toluidine blue o–tiopronin–gold nanoparticle conjugate. J Mater Chem. 2007;17(35):3739–46.

    Article  CAS  Google Scholar 

  41. Sherwani MA, Tufail S, Khan AA, Owais M. Gold nanoparticle-photosensitizer conjugate based photodynamic inactivation of biofilm producing cells: potential for treatment of C. albicans infection in balb/c mice. PLoS One. 2015;10(7).

  42. Naraginti S, Kumari PL, Das RK, Sivakumar A, Patil SH, Andhalkar VV. Amelioration of excision wounds by topical application of green synthesized, formulated silver and gold nanoparticles in albino wistar rats. Mater Sci Eng C. 2016;62:293–300.

    Article  CAS  Google Scholar 

  43. Hsu S-h, Chang Y-B, Tsai C-L, Fu K-Y, Wang S-H, Tseng H-J. Characterization and biocompatibility of chitosan nanocomposites. Colloids Surf B: Biointerfaces. 2011;85(2):198–206.

    Article  CAS  PubMed  Google Scholar 

  44. Volkova N, Yukhta M, Pavlovich O, Goltsev A. Application of cryopreserved fibroblast culture with au nanoparticles to treat burns. Nanoscale Res Lett. 2016;11(1):–6.

  45. Gobin AM, O'Neal DP, Watkins DM, Halas NJ, Drezek RA, West JL. Near infrared laser-tissue welding using nanoshells as an exogenous absorber. Lasers Surg Med. 2005;37(2):123–9.

    Article  PubMed  Google Scholar 

  46. Ramos R, Silva JP, Rodrigues AC, et al. Wound healing activity of the human antimicrobial peptide ll37. Peptides. 2011;32(7):1469–76.

    Article  CAS  PubMed  Google Scholar 

  47. Garcia-Orue I, Gainza G, Girbau C, et al. Ll37 loaded nanostructured lipid carriers (nlc): a new strategy for the topical treatment of chronic wounds. Eur J Pharm Biopharm. 2016. This group successfully delivered LL37 antimicrobial peptide as a topical wound healing therapy via nanostructured lipid carrier (NLC) encapsulation, which demonstrated wound healing benefits in full-thickness diabetic mouse wounds.

  48. Chereddy KK, Her C-H, Comune M, et al. Plga nanoparticles loaded with host defense peptide ll37 promote wound healing. J Control Release. 2014;194:138–47.

    Article  CAS  PubMed  Google Scholar 

  49. Xu X, Zhu F, Zhang M, et al. Stromal cell-derived factor-1 enhances wound healing through recruiting bone marrow-derived mesenchymal stem cells to the wound area and promoting neovascularization. Cells Tissues Organs. 2012;197(2):103–13.

    Article  CAS  PubMed  Google Scholar 

  50. Yeboah A, Cohen RI, Faulknor R, Schloss R, Yarmush ML, Berthiaume F. The development and characterization of sdf1α-elastin-like-peptide nanoparticles for wound healing. J Control Release. 2016;232:238–47.

    Article  CAS  PubMed  Google Scholar 

  51. Sarkar A, Tatlidede S, Scherer SS, Orgill DP, Berthiaume F. Combination of stromal cell-derived factor-1 and collagen–glycosaminoglycan scaffold delays contraction and accelerates reepithelialization of dermal wounds in wild-type mice. Wound Repair Regen. 2011;19(1):71–9.

    Article  PubMed  Google Scholar 

  52. Ghatak S, Li J, Chan YC, et al. Antihypoxamir functionalized gramicidin lipid nanoparticles rescue against ischemic memory improving cutaneous wound healing. Nanomed: Nanotechnol, Biol Med. 2016. Lipid nanoparticles were utilized to deliver an antisense inhibitor of hypoxia-induced microRNA that inhibits endogenous mRNA in the setting of ischemic wounds and leads to imparied healing. In mice prone to diabetes and atherosclerosis, a single injection of these nanoparticles significantly improved wound healing.

  53. Kasiewicz LN, Whitehead KA. Silencing tnfα with lipidoid nanoparticles downregulates both tnfα and mcp-1 in an in vitro co-culture model of diabetic foot ulcers. Acta Biomater. 2016;32:120–8.

    Article  CAS  PubMed  Google Scholar 

  54. Charafeddine RA, Makdisi J, Schairer D, et al. Fidgetin-like 2: a microtubule-based regulator of wound healing. J Investig Dermatol. 2015;135(9):2309–18 This group has identified fidgetin-like 2 (FL2), a microtubule-severing enzyme, as a new knockdown target to promote wound healing. In vitro FL2 knockdown demonstrated enhanced cell migration, and nanoparticles delivering FL2-targeting siRNA significantly improved wound healing in vivo in murine full-thickness excision and burn wounds.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zheng D, Giljohann DA, Chen DL, et al. Topical delivery of sirna-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc Natl Acad Sci. 2012;109(30):11975–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Randeria PS, Seeger MA, Wang X-Q, et al. Sirna-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside gm3 synthase knockdown. Proc Natl Acad Sci. 2015;112(18):5573–8 Spherical nucleic acids (SNAs) consisting of an Au-np core surrounded by dense layers of covalently-attached, highly oriented siRNA were used to knock down ganglioside-monosialic acid 3 synthase (GM3S), an enzyme related to insulin resistance. Wound healing was accelerated following topical SNA delivery in mouse and human skin, accompanied by increased pro-healing growth factors in wound edge tissue.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang P, Chen L, Zhang Q, Hong FF. Using in situ dynamic cultures to rapidly biofabricate fabric-reinforced composites of chitosan/bacterial nanocellulose for antibacterial wound dressings. Front Microbiol. 2016;7.

  58. Czaja W, Krystynowicz A, Bielecki S, Brown RM. Microbial cellulose—the natural power to heal wounds. Biomaterials. 2006;27(2):145–51.

    Article  CAS  PubMed  Google Scholar 

  59. Napavichayanun S, Yamdech R, Aramwit P. The safety and efficacy of bacterial nanocellulose wound dressing incorporating sericin and polyhexamethylene biguanide: in vitro, in vivo and clinical studies. Arch Dermatol Res. 2016;308(2):123–32.

    Article  CAS  PubMed  Google Scholar 

  60. Ju HW, Lee OJ, Lee JM, et al. Wound healing effect of electrospun silk fibroin nanomatrix in burn-model. Int J Biol Macromol. 2016;85:29–39.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarl Prow.

Ethics declarations

Conflict of Interest

Tarl Prow and Breanne Mordorski declare they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Wound Care and Healing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mordorski, B., Prow, T. Nanomaterials for Wound Healing. Curr Derm Rep 5, 278–286 (2016). https://doi.org/10.1007/s13671-016-0159-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13671-016-0159-0

Keywords

Navigation