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Abstract Increasing temperature and consequent changes in
climate adversely affect plant growth and development,
resulting in catastrophic loss of wheat productivity. For each
degree rise in temperature, wheat production is estimated to
reduce by 6%. A detailed overview of morpho-physiological
responses of wheat to heat stress may help formulating appro-
priate strategies for heat-stressed wheat yield improvement.
Additionally, searching for possible management strategies
may increase productivity and sustainability of growing
wheat. The major findings from this review are as follows:
(1) heat stress significantly reduces seed germination and
seedling growth, cell turgidity, and plant water-use efficiency;
(2) at a cellular level, heat stress disturbs cellular functions
through generating excessive reactive oxygen species, leading
to oxidative stress; (3) the major responses of wheat to heat
stress include the enhancement of leaf senescence, reduction
of photosynthesis, deactivation of photosynthetic enzymes,
and generation of oxidative damages to the chloroplasts; (4)
heat stress also reduces grain number and size by affecting
grain setting, assimilate translocation and duration and growth
rate of grains; (5) effective approaches for managing heat
stress in wheat include screening available germplasm under
field trials and/or employing marker-assisted selection, appli-
cation of exogenous protectants to seeds or plants, mapping
quantitative trait locus conferring heat resistance and breed-
ing; (6) a well-integrated genetic and agronomic management

option may enhance wheat tolerance to heat. However, the
success of applying various techniques of heat stress
management requires greater understanding of heat tolerance
features, molecular cloning, and characterization of genes.
The overall success of the complex plant heat stress
management depends on the concerted efforts of crop
modelers, molecular biologists, and plant physiologists.
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1 Introduction

Various environmental stresses affecting plant growth
and development have attained a serious concern in the
context of possible climate change. Contemporary agri-
culture faces a tremendous environmental pressure across
the globe. Foley et al. (2011) suggested several manage-
ment options including conservation tillage, adopting
yield gap strategies, increasing cropping efficiencies that
could be greatly effective to minimize environmental im-
pacts and for sustainable crop production. However, the
most remarkable environmental concern in agriculture is
the increase of global temperature. With regard to global
climate models, the mean ambient temperature is predict-
ed to increase by 1–6°C by the end of twenty-first cen-
tury (De Costa 2011). Such increase of global tempera-
ture may have a significant influence on agricultural pro-
ductivity in accordance with the severity of the high
temperature, drought, salinity, waterlogging, and mineral
toxicity stresses. High temperature-induced heat stress is
expressed as the rise in air temperature beyond a thresh-
old level for a period sufficient to cause injury or irre-
mediable damage of crop plants in general (Teixeira
et al. 2013). The heat stress situation is aggravated when
soil temperature increases as a result of increase in air
temperature associated with decline in soil moisture.
Thus, heat stress has appeared as a great menace to suc-
cessful crop production in the world (Kumar et al. 2012;
Lobell and Gourdji 2012; Gourdji et al. 2013).

Wheat (Triticum aestivum L.), the most widely culti-
vated cereal crop belonging to Poaceae family, is the
largest contributor with nearly 30% of the world grain
production and 50% of the world grain trade. FAO esti-
mated that the world would require additional 198 mil-
lion tonnes of wheat by 2050 to accomplish the future
demands, for which wheat production need to be in-
creased by 77% in the developing countries (Sharma
et al. 2015). However, the temperature anomaly distri-
bution is changing toward higher temperatures and the
anomalies are increased (Hansen et al. 2012). Such a
situation over the crop growing season has already been
reported to reduce wheat productivity in the many re-
gions of the world (Fontana et al. 2015; Mueller et al.
2015). Some indicators of heat stress effects in wheat are
illustrated in Fig. 1.

Wheat is very receptive to heat stress (Gupta et al.
2013a). Low latitude zones, where around 100 million

hectares of wheat are cultivated, are predominantly heat
prone areas worldwide (Braun et al. 2010). Asseng et al.
(2014) tested 30 wheat crop models where mean temper-
atures in the growing season ranged from 15 to 32°C
with artificial heating. The results obtained indicate that
warming already decreased grain yield at a majority of
the wheat-growing locations. The simulated median tem-
perature impact on declining wheat yield varied widely,
and the average yields for the periods between 1981 and
2010 decreased; ranging between 1 and 28% across 30
sites of the world; for an increase in temperature of 2°C;
and this value rose to between 6 and 55% for a temper-
ature of 4°C. Also they estimated that global wheat pro-
duction falls by 6% for each 1°C of further temperature
increase. The low latitudes showed a marked increase in
simulated yield variability with higher temperature than
that observed at high latitudes. This greater relative yield
decline was due to the higher reference temperature
(Challinor et al. 2014). Mondal et al. (2013) stated that
the effects of heat stress on plants are very complex
resulting in alteration of growth and development,
changes in physiological functions, and reduced grain
formation and yield (Fig. 2). Heat stress causes alteration
of plant water relations (Hasanuzzaman et al. 2012, 2013),
reduction of photosynthetic capacity (Almeselmani et al.
2012; Ashraf and Harris 2013), decreases of metabolic
activities (Farooq et al. 2011) and changes of hormones
(Krasensky and Jonak 2012), production of oxidative
reactive species (Wang et al. 2011), promotion of eth-
ylene production (Hays et al. 2007), reduction of pol-
len tube development, and increases of pollen mortality
(Oshino et al. 2011) in wheat. During the period from
1880 to 2012, the Earth’s system warmed by 0.85°C
(IPCC 2014). This warming period will continue and is
predicted to rise between the range of 1.5–4.0°C in the
future (Wheeler and Von Braun 2013). The climatic
factors like changes in temperature, precipitation,
CO2, weather variability, and soil moisture deficit
would have positive or negative effects on crop
production (Joshi and Kar 2009). The deleterious im-
pacts of climate change on crop production are
challenging the food security of the world, and it is
predicted that sustaining wheat production will be
impacted more by increasing temperature (Tripathi
et al. 2016). Climate change could strongly affect
wheat production, accounting for 21% of food and
200 million hectares of farmland worldwide (Ortiz
et al. 2008).

Climate change impacts on crop production are highly di-
verse. Deryng et al. (2014) contributed greatly to current un-
derstanding of climate change impacts on crops under heat
stress and elevated CO2 environment. The heat stress occurs
usually for rising of canopy temperature that depends on air
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and soil temperature, soil and canopy properties, and loss of
soil moisture (Fig. 3). High temperature affects crops in dif-
ferent ways including poor germination and plant establish-
ment, reduced photosynthesis, leaf senescence, decreased pol-
len viability, and consequently production of less grains with
smaller grain size (Ugarte et al. 2007; Asseng et al. 2011).
Such effect varies depending on the crops, cultivars, and
phenological stages. Due to global warming and changes in
the climate pattern, it is imperative to determine the effects of
heat stress and possible ways of improving heat tolerance for
the success of wheat production under heat stress
environment. Reidsma et al. (2010) approached various
models of adaptation measures based on climate impact as-
sessment. Deryng et al. (2014) considered choice of cultivars
and changing sowing dates as adaptive measures under ex-
treme heat stress conditions. Some other adaptation measures
are surface cooling by irrigation (Lobell et al. 2008), antioxi-
dants defense (Suzuki et al. 2011; Caverzan et al. 2016), and
osmoprotectants (Farooq et al. 2011; Kaushal et al. 2016).

However, development of heat-tolerant wheat varieties and
generation of improved pre-breeding materials for any breed-
ing program in future is crucial in meeting the food security
(Ortiz et al. 2008). Proteomic and transcriptomic data are im-
portant to identifying genes and proteins that respond to envi-
ronment, and affects yield and quality of wheat. However,
more information regarding this is required to develop wheat
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Fig. 2 Major effects of heat stress
on plants growth and
development. Pn, Rs, and Ci
indicate photosynthesis, stomatal
conductance, and intercellular
CO2 concentration, respectively

Fig. 1 Indicators of heat stress are stay green characteristics, rapid
ground coverage and early heading and phenology (photo from a
USDA research project)
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variety that can adapt to climate change-induced high temper-
ature (Altenbach 2012). In this context, this review covers an
overview of the current work reported on heat-induced ad-
verse effects and various crucial management strategies to
address the heat stress situation in wheat.

2 Plant responses to heat stress

Heat stress affects various plant processes leading to morpho-
physiological alterations in wheat plants, hindering the devel-
opment processes and eventually resulting into great yield loss
(McClung and Davis 2010; Grant et al. 2011). Plant responses
to heat stress differ significantly with the extent and duration
of temperature, and the growth stages encountering the stress
(Ruelland and Zachowski 2010). Some common effects of
heat stress on growth and productivity, grain development,
and yield of wheat are presented in Table 1.

2.1 Morphological and growth responses

The primary effect of heat stress is the impediment of seed
germination and poor stand establishment in many crops in-
cluding wheat (Johkan et al. 2011; Hossain et al. 2013).
Ambient temperature around 45°C severely affects embryonic
cell in wheat which reduces crop stands through impairing
seed germination and emergence (Essemine et al. 2010).
Heat stress mostly affects the plant meristems and reduces
plant growth by promoting leaf senescence and abscission,
and by reducing photosynthesis (Kosova et al. 2011). Heat

stress ranging from 28 to 30°C may alter the plant growth
duration by reducing seed germination and maturity periods
(Yamamoto et al. 2008). Warm environment produces lower
biomass compared to plants grown under optimum or low
temperature. Day and night temperature around 30 and
25°C, respectively, may have severe effects on leaf develop-
ment and productive tiller formation in wheat (Rahman et al.
2009). However, the prevalence of reproductive stage heat
stress has been found to be more detrimental in wheat produc-
tion (Nawaz et al. 2013). One degree rise in average temper-
ature during reproductive phase can cause severe yield loss in
wheat (Bennett et al. 2012; Yu et al. 2014). High temperature
stress degenerates mitochondria, changes the protein expres-
sion profiles, reduces ATP accumulation, and oxygen uptake
in imbibing wheat embryos, resulting in increased occurrence
of loss of seed quality relating to seed mass, vigor, and germi-
nation (Balla et al. 2012; Hampton et al. 2013). Increase in
temperature of 1–2°C reduces seed mass by accelerating seed
growth rate and by shortening the grain-filling periods in
wheat (Nahar et al. 2010).

2.2 Physiological responses

2.2.1 Water relations

Plant water status is generally found to be most erratic
under changing ambient temperature. High temperature
seems to cause dehydration in plant tissue and subse-
quently restricts growth and development of plants.
During flowering, a temperature of 31°C is generally

Plant response
Poor plant establishment
Plant tissue dehydration
Decreasedphotosynthesis
Leaf senescence
Pollen sterility
Reduced grain growth

Adaptation to heat stress
Crop and cultivar choice
Modified sowing date
Irrigation
Antioxidant defense
Osmo-protectants
Transpiration cooling

Occurrence of heat stress
Increased air temperature
Increased soil temperature
Loss of soil moisture
Adverse soil physical 
properties
Altered canopy properties

Climate 
change 
impact

Fig. 3 Schematic illustration of
linking between climate-induced
heat stress occurrence, plant
responses to heat stress, and
adaptation measures in the
farmers’ field
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considered as an upper limit of maintaining water status
of a crop (Atkinson and Urwin, 2012). With a concom-
itant increase in leaf temperature, wheat plants exposed
to heat stress substantially decrease the water potential
and the relative water content in leaves, and eventually
reduce photosynthetic productivity (Farooq et al. 2009).
Simultaneously, the rate of transpiration and plant
growth are severely affected. Almeselmani et al.
(2009) observed that high temperature (35/25°C) im-
posed after tillering showed a significantly reduction of
water potential in wheat, and the reduction was higher
in genotypes susceptible to heat stress. In general, dif-
ferent antioxidants are associated with dehydration tol-
erance and are stimulated under heat stress. This is be-
cause of increased transpiration in stressed leaf and
dropping of osmotic potential (Ahmad et al. 2010).
Heat stress also increases hydraulic conductivity of cell
membrane as well as plant tissues primarily for in-
creased aquaporin activity (Martinez-Ballesta et al.
2009) and to a greater extent for reduced water viscos-
ity (Cochard et al. 2007).

2.2.2 Photosynthesis, photosystems, and leaf senescence

Photosynthesis is the most sensitive physiological
event leading to poor growth performance in wheat
(Feng et al. 2014). A major effect of heat stress is
the reduction in photosynthesis resulting from de-
creased leaf area expansion, impaired photosynthetic
machinery, premature leaf senescence, and associated
reduction in wheat production (Ashraf and Harris
2013; Mathur et al. 2014). The reaction sites of heat-
induced injury are stroma and thylakoid lamellae of
chloroplast where carbon metabolism and photochemi-
cal reactions occur, respectively. In wheat, heat stress
causes disruption of thylakoid membranes, thereby
inhibiting the activities of membrane-associated

electron carriers and enzymes, which ultimately results
in a reduced rate of photosynthesis (Ristic et al. 2008).
The inactivation of chloroplast enzymes, mainly in-
duced by oxidative stress, may also reduce the rate
of leaf photosynthesis. Reduction of net photosynthetic
rate due to heat stress is often attributed to increased
non-photorespiratory processes (Ainsworth and Ort
2010). The researchers opined that impediment of pho-
tosynthetic activities is the result of reduced soluble
protein, Rubisco and Rubisco binding proteins (Parry
et al. 2011; Hasanuzzaman et al. 2013). Wheat leaf
exposed to a high temperature around 40°C either in
dark or light causes a great change in Rubisco and
Rubisco activase and such changes are irreversible un-
der dark conditions (Mathur et al. 2011).

In photosynthesizing tissues, photosystem-II is much re-
sponsive to heat stress (Marutani et al. 2012) but
photosystem-I is relatively stable (Mathur et al. 2014). Heat
stress firstly, damages the complex phenomena of
photosystem-II and secondly, changes the photosynthetic be-
havior. The stress causes suppression of carbon assimilation
due to inactivation of Rubisco activase in wheat. The reduc-
tion of carbon assimilation reduces ROS generation which, in
turn, reduces protein synthesis and inhibits repairing of dam-
aged photosystem-II (Murata et al. 2007; Allakhverdiev et al.
2008). Prasad et al. (2008a) also explained the sensitivity of
photosystem-II where increasing fluidity of thylakoid mem-
brane and transport of electron to heat stress are commonly
observed. It is manifested that temperature >40°C dissociates
the light harvesting complex-II Chl a/b-proteins from the
photosystem-II (Iwaia et al. 2010). Heat stress damaging and
disordering of thylakoid membranes is also responsible for the
cessation of photophosphorylation (Dias et al. 2009a). At high
temperature, the key regulatory enzyme of Rubisco, i.e.,
Rubisco activase is reported to be dissociated causing a
reduction in the photosynthetic capacity of leaf in wheat
(Raines 2011).

Table 1 Effects of heat stress at different stages of growth and development of wheat

Heat treatment Growth stage Major effects References

45°C, 2 h After 7 days of
germination

Reduced length and dry mass of shoot and root; decreased
chlorophyll and membrane stability index

Gupta et al. (2013a)

42°C, 24 h Seedling stage Inhibited roots and first leaves development; increased reactive
oxygen species (ROS) and lipid peroxidation (LP) products
in
the coleoptile and developing organ

Savicka and Skute (2010)

37/28°C day/night From 10 to 20 days post
anthesis until maturity

Shortened grain filling period and maturity; drastically reduced
fresh weight, dry weight, protein, and starch content in grain;
reduced grain size and yield

Hurkman et al. (2009)

34/26°C (day/night),
16 days

At the grain-filling stage Increased leaf temperature; decreased leaf chlorophyll and
maximum quantum yield of photosystem-II; decreased in
individual grain weight and grain yield

Pradhan and Prasad
(2015)
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Leaf senescence is one of the inimitable symptoms of heat
injury characterized by structural changes in the chloroplast
followed by a vacuolar collapse, and thereafter a loss of plas-
ma membrane integrity and interference of cellular homeosta-
sis (Khanna-Chopra 2012). Thus, heat stressed wheat plants
have been found to be experienced senescence-related meta-
bolic changes (Ciuca and Petcu 2009). Inhibition of chloro-
phyll biosynthesis under heat stress (>34°C) may hasten leaf
senescence in wheat (Asseng et al. 2013). Wheat plant ex-
posed to heat stress during maturity enhanced leaf senescence,
accentuated the loss of chloroplast integrity, and accelerated
the turn-down of photosystem-II-mediated electron transport
(Haque et al. 2014). However, a large diurnal variation in
temperature is also responsible for the promotion of flag leaf
senescence in wheat (Zhao et al. 2007).

2.2.3 Oxidative damage

Plants exposed to heat stress often leads to the generation of
destructive ROS, including singlet oxygen (1O2), superoxide
radical (O2−), hydrogen peroxide (H2O2), and hydroxyl radi-
cal (OH−) responsible for generating oxidative stress
(Marutani et al. 2012; Suzuki et al. 2012). Oxidative stress
notably increased membrane peroxidation and decreased
membrane thermo-stability in many plants including wheat
(Savicka and Skute 2010). Hydroxyl radicals react with al-
most all constituents of cells. Continual heat stress in plants
may cause accumulation of ROS in cell plasma membrane
with depolarization of cell membrane, activation of ROS-
producing enzyme RBOHD and trigger of programmed cell
death (Mittler et al. 2011). Miller et al. (2009) found that heat
stress increased O2—production in root by 68% and
malondialdehyde (MDA) content in leaf by 27% at the early
stages, and 58% at the later stage of seedling development.
However, plants have antioxidant mechanisms for escaping
the excess ROS. Several studies have shown that antioxidants
superoxide dismutase (SOD), ascorbate peroxidase (APX)
and catalase (CAT) glutathione reductase (GR), and peroxi-
dase (POX) have ameliorating effects of heat stress in wheat
(Suzuki et al. 2011; Caverzan et al. 2016).

2.2.4 Respiration

Heat stress changes mitochondrial activities by affecting res-
piration. The rate of respiration increases with increasing tem-
perature, but at a certain level of temperature, it diminishes
due to damage of respiratory apparatus (Prasad et al. 2008b).
The increased rate of respiratory carbon loss due to heat stress
in the rhizosphere reduced production of ATP and enhanced
the generation of ROS (Huang et al. 2012). This is because
heat stress affects the solubility of CO2 and O2, and the kinet-
ics of Rubisco (Cossani and Reynolds 2012). Almeselmani
et al. (2012) observed that the rate of respiration in flag leaf

of wheat was significantly higher in heat susceptible varieties
under heat stress (35/25°C day/night) when compared with
that of control (23/18°C day/night).

2.3 Grain growth and development

The optimum temperature for wheat anthesis and grain filling
ranges from 12 to 22°C (Shewry 2009). Plants exposed to
temperatures above >24°C during reproductive stage signifi-
cantly reduced grain yield and yield reduction continued with
increasing duration of exposure to high temperature (Prasad
and Djanaguiraman 2014).

2.3.1 Grain number, grain filling, and grain quality

Heat stress reduces the number of grains leading to lower
harvest index in wheat (Lukac et al. 2011). However, the in-
fluence of heat stress on both the number and size of grains
varies with the growth stages encountering heat stress. For
instance, temperatures above 20°C between spike initiation
and anthesis speed up the development of the spike but reduce
the number of spikelets and grains per spike (Semenov 2009).
Heat stress adversely affects pollen cell and microspore
resulting into male sterility (Anjum et al. 2008). Even high
temperature of above 30°C during floret development may
cause complete sterility in wheat depending on genotypes
(Kaur and Behl 2010). In wheat, the anther produced under
3 days heat stress during anthesis was found to be structurally
abnormal and nonfunctional florets (Hedhly et al. 2009). Day/
night high temperature of 31/20°C may also cause shrinking
of grains resulting from changing structures of the aleurone
layer and cell endosperm (Dias et al. 2008).

Grain-filling stage in wheat is very sensitive to high tem-
perature (Farooq et al. 2011). Heat stress generally accelerates
the rate of grain-filling and shortens the grain-filling duration
(Dias and Lidon 2009a). However, the grain growth rate and
duration decreased in plants having different grain weight sta-
bility (Vijayalakshmi et al. 2010). In wheat, grain-filling du-
ration may be decreased by 12 days with the increase of 5°C
temperature above 20°C (Yin et al. 2009). The increase in
night temperature is more responsive, shortens the grain-
filling period, and reduces the grain yield than that of day
temperature. Night temperatures of 20 and 23°C reduced the
grain-filling period by 3 to 7 days (Prasad et al. 2008a).
Recently, Song et al. (2015) observed a significant reduction
in the rate of grain filling in wheat cultivars at day/night tem-
perature of 32/22°C when compared with that of 25/15°C.

Heat stress affects grain quality of many cereals and le-
gumes, essentially because of limitation of assimilates and less
remobilization of nutrients. Heat stress hardly affects the pro-
tein concentration of grain in wheat (Lizana and Calderini
2013), but a strong correlation was observed between leaf
nitrogen content and grain protein (Iqbal et al. 2017).

37 Page 6 of 17 Agron. Sustain. Dev. (2017) 37: 37



However, wheat plants are capable of adopting a heat shock
by developing thermo-tolerance for the improvement of the
grain quality and yield (Sharma-Natu et al. 2010). Although
build-up of protein in wheat grain is not significant under heat
stress, the processing quality traits are reported important. Li
et al. (2013) found that heat tends to diminish flour quality by
reducing gluten strength-related parameters lactic acid reten-
tion capacity and mixograph peak time. However, wheat
plants experiencing heat stress early in grain filling were
found to have high content of grain protein (Castro et al.
2007). Increased grain protein content is associated with sed-
imentation index and intensity of essential amino acids. With
decreased levels of amino acids, heat stress decreases the sed-
imentation index (Dias et al. 2008).

2.3.2 Starch synthesis

Wheat grain contains 60–75% starch of its total dry weight
(Sramkova et al. 2009). Heat stress significantly limits starch
biosynthesis in grains of wheat but caused a remarkable in-
crease in total soluble sugar and protein (Sumesh et al. 2008;
Asthir and Bhatia 2014). Liu et al. (2011) observed that heat-
shock treatment above 30°C resulted in a significant increase
of grain starch and limited the dry matter accumulation in
grain of wheat. Around 97% of activity was lost due to the
decrease in soluble starch synthase at 40°C, resulting in reduc-
ing grain growth and starch accumulation in wheat (Chauhan
et al. 2011). High temperature stress (35/27°C) imposed at
seedling stage significantly reduce soluble sugar accumulation
and biomass yield in wheat (Wang et al. 2014).

2.3.3 Translocation of photosynthetic products

Photosynthetic products in the form of sucrose and glutamine
are essentially translocated to the reproductive sinks for seed
development. Under heat stress conditions, the source and sink
limitations may reduce the growth and development of crop
plants. Seed-set and -filling can also be restricted by source
and/or sink limitations (Lipiec et al. 2013). When photosynthe-
sis is inhibited by heat stress, stem reserves during pre-anthesis
period are recognized as source of carbon for supporting grain
filling (Mohammadi et al. 2009). In wheat, heat stress reduced
N remobilization. The grain filling of wheat is seriously im-
paired by heat stress due to reduction in current leaf and ear
photosynthesis. In case of heat-induced source limitation, plants
seek to explore alternative source of assimilates to remobilize
into the grains. At this time, stem reserves of water soluble
carbohydrate and its greater translocation to reproductive or-
gans are vitally important for supporting grain growth and de-
velopment (Talukder et al. 2013). However, assimilate translo-
cation occurring through both symplastic and apoplastic path-
way is substantially reduced at high temperature. High temper-
ature at the pre-anthesis period increased carbohydrate

translocation from stem to grain resulting to less reduction of
starch content in grains of wheat at the post-anthesis heat stress
(Wang et al. 2012). In future, research directing to assimilate
partitioning and phenotypic flexibility is suggested by Iqbal
et al. (2017).

3 Managing heat stress

It is evident that heat stress adversely affects the growth and
development of wheat plants. Such effects can be managed
principally through producing appropriate plant genotypes to-
gether with adjustment of relevant agronomic practices
(Asseng et al. 2011; Chapman et al. 2012). Various efforts
have been made to produce heat-tolerant genotypes using
the knowledge gained until now on the responses of wheat
plant to heat stress. For sustainable wheat production in heat-
stressed areas, the two most imperative strategies can be
followed: (a) introduction of genetically modified or transgen-
ic wheat cultivars by selecting molecular and biotechnological
means coupled with conventional breeding approaches and
(b) inducing several agronomic management strategies so far
experiencing heat stress management under field conditions.
A schematic diagram showed identification of wheat geno-
types tolerant to heat stress, and breeding and adaptation strat-
egies for managing wheat genotypes under heat stress envi-
ronment (Fig. 4).

3.1 Genetic management

Breeding is an adaptation response of crops under changing
environment. Therefore, it requires the evaluation of genetic
diversity for adaptation to future climate change conditions,
and thereby the selection and induction of stress inducible
genes of genetic resources for developing new varieties in
the production systems (Chapman et al. 2012). Breeding for
heat tolerance is still in the preliminary stage and therefore,
much attention is given to the genetic improvement of wheat
to heat stress. In recent years, several studies have been done
to find out wheat genotypes tolerant to heat stress (Kumar
et al. 2010; Sareen et al. 2012; Kumari et al. 2013; Nagar
et al. 2015).

3.1.1 Screening and breeding for heat tolerance

In breeding program, various physiological approaches have
been found to be effective in Australia and several developing
countries. The methodology includes screening genetic re-
sources for identification of genetic bases for heat tolerance
in crops. From this, a desired new plant types can be devel-
oped following physiological crossing of novel trait combina-
tions, to combat future climate that comprises high tempera-
ture events (Reynolds and Langridge 2016). Screening wheat
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genotypes under natural heat stress condition in various spatial
environments is difficult. Therefore, no consistent selection
criterion has been established to evaluate diverse genetic ma-
terials for tolerance to heat stress. Selection criteria and
screening methods for identifying better wheat genetic mate-
rials tolerant to heat stress are generally approached based on
characteristics associated with higher grain yield under the
adverse heat stress situation. In this regards, researchers sug-
gested some indirect selection criteria for developing heat tol-
erance in wheat (Table 2).

Sharma et al. (2013) found susceptibility index as a consis-
tent parameter while selecting wheat genotypes tolerant to
heat stress. Mason et al. (2010) have given emphasis on quan-
titative trait loci (QTL) mapping of each yield attributes as
susceptibility index and its collective contribution to heat tol-
erance and grain yield stability. Recent data shows that thyla-
koid membrane stability is highly associated with the heat
tolerance capacity of wheat. Mass screening using stay-
green character may be done for heat tolerance of wheat ge-
notypes. Kumar et al. (2010) followed this method in evalu-
ating stay-green trait of wheat and found a correlation with
terminal heat tolerance in wheat. In general, morphological
traits like early ground cover, leaf rolling, biomass, and also
several physiological traits, such as leaf chlorophyll content,
photosynthetic rate, flag leaf stomatal conductance,
membrane thermostability, and stem reserves have been
found to be associated with cellular thermotolerance in
wheat plants. Recent advances in molecular science
contributed greatly to understand the complexity of stress

response mechanisms under heat stress conditions. Asthir
(2015a, b) emphasized on the knowledge of molecular path-
ways and protective mechanisms to breed heat stress-tolerant
plants. Heat tolerance is obviously a polygenic trait, and the
above tools also aid in analyzing the genetic basis of plant
thermotolerance. Wang et al. (2016) proposed a useful utiliza-
tion of some transcription factors to improve multiple stress
tolerance of crops. QTL mapping and subsequent marker-
assisted selection made it possible to better understanding
the heat tolerance in plants (Heffner et al. 2009). Recent stud-
ies reveal that several QTLs are available and can be used for
developing heat tolerance in wheat. For example, QTLs for
heat tolerance has been identified for grain weight and grain-
filling duration (Mason et al. 2010; Paliwal et al. 2012),
senescence-related traits (Vijayalakshmi et al. 2010), and can-
opy temperature (Paliwal et al. 2012). Mason et al. (2010) also
identified QTLs related to yield and yield attribute traits and
suggested that the spike of wheat could be used for locating
QTL’s genomic zone for heat tolerance. Besides, others rec-
ognized QTLs on chromosomes 2B and 5B and 4A in wheat
under heat stress conditions (Pinto et al. 2010). The electrolyte
leakage is an indication of reduced cell membrane thermo-
stability (CMT) and reflects the performance of wheat geno-
types subjected to in vitro heat shock. Genotypes generating
heat shock proteins (HSPs) can withstand heat stress as they
protect proteins from heat-induced damage (Farooq et al.
2011). The genotypic differences in CMT tolerance in wheat
at different growth stages were also reported (Kumar et al.
2013b; Asthir et al. 2013). The findings also suggested that
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•Marker assisted selection
• Induction of heat inducible gene
•Genetic transformation

Growing genotypes 
under heat stress
for screening

Selection criteria for 
identification

Vegetative stage:
Heat tolerance index

Reproductive stage:
Grain filling and  
grain quality

Management of nutrients and 
planting time
• NPK enrich grain protein;
• NO3

- delayed ABA synthesis and 
promote CK activity;

• Ca increases MAD and stimulates 
SOD, CAT functions;

• Mg, Zn alleviate detrimental 
effects of heat stress;

• Early planting stay away from 
terminal heat stress.

Use of exogenous 
protectants
• Osmoprotectants, 

phytohormones, signaling 
molecules improve 
thermotolerance by 
managing the ROS; 

• Several polyamines (PAs) 
viz. spermine, spermidine, 
and putrescine improve 
heat stress tolerance.

G
en

et
ic

 M
an

ag
em

en
t

A
gr

on
om

ic
 M

an
ag

em
en

t

Adaptation 
strategies

Development 
of wheat 
genotypes

M
an

ag
in

g 
w

he
at

 
cu

lti
va

rs
 u

nd
er

 h
ea

t 
st

re
ss

 e
nv

ir
on

m
en

t

Fig. 4 Schematic diagram
showing the exploration of wheat
genetic resources and identifying
wheat genotypes tolerant to heat
stress, breeding strategies
followed for genetic enhancement
of diverse wheat genetic resource
and adaptation strategies needed
for managing genotypes
considering phenology under heat
stress environment for high yield
potentials
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the abundance of small heat shock protein and superoxide
dismutase during milky-dough stage plays a vital role in the
biosynthesis of starch granule, and this will help to develop
heat-tolerant wheat cultivars containing high quality grains.
For this, a simple, quick, and less costly screening method is
required for a large number of germplasm to develop heat-
tolerant wheat cultivars. As such, SPAD chlorophyll meter
could be used for high throughput screening of wheat germ-
plasm for heat tolerance (Ristic et al. 2007).

3.1.2 Biotechnological approach for improving heat tolerance

Genetic engineering and transgenic approaches can alle-
viate the adverse effects of heat stress by improving
heat tolerance (Chapman et al. 2012). It involves the
incorporation of genes of interest into the desired plants
to improve plant tolerance to heat stress (Zheng et al.
2012). However, the complexity of the genomic pattern
makes it difficult to research for genetic modification in
wheat. Heat stress for a longer period increases protein
synthesis elongation factor (EF-Tu) in chloroplast which
is associated with heat tolerance in wheat. The consti-
tutive expression of EF-Tu in transgenic wheat protected
leaf proteins against thermal aggregation, reduced thyla-
koid membranes disruption, enhanced photosynthetic ca-
pability, and resisted pathogenic microbes infection (Fu
et al. 2012). The wheat genotypes accruing more EF-Tu

showed better tolerance to heat stress than those ex-
posed to less EF-Tu (Ristic et al. 2008). Recently, many
transcription factors (TFs) involved in various abiotic
stresses have been found and engineered to improve
stress tolerance in crops (Wang et al. 2016). Genome
sequences of many plants are recently generated for
improvement of stress tolerance. Clavijo et al. (2016)
confirmed three known and identified one novel genome
rearrangement of wheat. They used relatively inexpen-
sive sequencing technologies and anticipated that re-
searchers will use the approaches illustrated to sequence
multiple wheat varieties. This will bring a large scale
structural changes that are known to play a major role
in the adaptation of the wheat crop to different stressful
environments.

3.2 Agronomic management

Wheat can be grown successfully in a warmer environ-
ment through manipulating some agronomic manage-
ment practices (Ortiz et al. 2008). Adoption of various
agronomic practices like (i) water conserve techniques
(ii) the appropriate amount and methods of fertilization
(iii) maintaining proper time and methods of sowing,
and (iv) the application of exogenous protectants can
effectively alleviate the adverse impact of heat stress in
wheat (Singh et al. 2011b).

Table 2 Selection criteria of wheat genetic resources for tolerance to heat stress

Sl. no. Selection criteria for heat
stress tolerance in wheat

References

1. Growth and phenology

a. Rapid ground coverage Cossani and Reynolds (2012), Khan and Kabir (2014)

b. Leaf rolling, shedding
and thickening

Nawaz et al. (2013)

c. Biomass yield Khan and Kabir (2014)

d. Early heading and
phenology

Hussain et al. (2016)

2. Physiological traits

a. Photosynthesis and
stomatal conductance

Radhika and Thind (2014)

b. Stay green duration Zhao et al. (2007), Bahar et al. (2011), Lopes and Reynolds (2012),
Nawaz et al. (2013)

c. Membrane stability Sikder and Paul (2010), Dhanda and Munjal (2012), Talukder et al.
(2014)

d. Leaf chlorophyll content Trethowan and Mujeeb-Kazi (2008)

e. Stem reserves Mohammadi et al. (2009)

3. Yield and yield attributes

a. Grain weight Sharma et al. (2008); Sareen et al. (2012), Bennani et al. (2016)

b. Grain filling rate and duration Nawaz et al. (2013), Khan and Kabir (2014), Song et al. (2015)

c. Number of fertile spikes Khan and Kabir (2014), Bennani et al. (2016)
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3.2.1 Conserving soil moisture

A continuous supply of water is necessary for sustaining the
grain-filling rate and duration, and grain size in wheat. This
could not be possible in rain-fed wheat growing area, but here,
mulching can be the best option for maintaining optimum
moisture and thermal regimes in the soil system. Straw mulch
conserves soil moisture by reducing soil evaporation (Chen
et al. 2007). However, mulching is advocated to avoid yield
reduction in wheat when reduced tillage is practiced (Glab and
Kulig 2008). Increasing the productivity of wheat using mulch
under heat stress and water deficit environment has been re-
ported elsewhere (Chakraborty et al. 2008). Application of
organic mulches preserves better soil moisture and improves
plant growth and development, subsequently increases water
and nitrogen use efficiency which may reduce (Singh et al.
2011b). This practice has been found to be very effective in
wheat production under adverse heat stress conditions in tem-
perate and tropical regions.

3.2.2 Nutrient management and planting time

Adequate and balanced supply of mineral nutrients is
essential in plants exposed to temperature stress
(Waraich et al. 2012). Application of nitrogen, phos-
phorus, and potassium at the post-anthesis period en-
riches grain proteins when the day and night tempera-
tures remain 24 and 17°C, respectively, but effects are
nullified for higher day and night temperature. Foliar
spray of nutrients is very effective and can alleviate such ad-
verse effect of heat stress on wheat. Application of potassium
orthophosphate (KH2PO4) as a foliar spray after anthesis
could be an alternative technique to increase the heat
tolerance of wheat. Potassium orthophosphate causes a
delay in the heat stress-induced leaf senescence and en-
hances grain yield (Dias and Lidon 2010). The
advantages of NO3

− through delaying abscisic acid
synthesis and promoting cytokinin activi ty, and
similar ly K+ induced increasing photosynthet ic
act ivi t ies and assimilates accumulation are well
recognized for increasing grain yield under heat stress
environment (Singh et al. 2011a).

The exogenous application of calcium promotes heat toler-
ance in plants (Waraich et al. 2011). Calcium (Ca) application
in the form of CaCl2 increased the malondialdehyde (MDA)
content and stimulated the activities of guaiacol peroxidase,
SOD, and CAT in wheat, which could be the reasons for the
induction of heat tolerance. In bread wheat genotypes, Ca
accumulation also seems to be linked with a higher tolerance
to heat stress, possibly because this nutrient can shield chlo-
rophylls from photo-destruction and can maintain stomata
functioning, thus attenuating the heat stress effects through
transpiration (Dias et al. 2009b).

Adequate supply of magnesium (Mg) was identified as an
effective nutritional strategy to minimize heat stress-related
losses in wheat production. Mengutay et al. (2013) found that
wheat plants suffering fromMg deficiency were susceptible to
heat stress, and sufficient Mg in the form of MgSO4.7H2O
effectively alleviated the detrimental effect of heat stress
(light/dark 35/28°C). Zinc (Zn) deficiency and heat stress also
affect the wheat productivity by reducing kernel growth and
chloroplast function (Peck and McDonald 2010). Heat stress
generally increases Zn concentration in grain mostly due to
remobilization from the shoot (Dias and Lidon 2009b).
Therefore, Zn has also been proven to be effective in improv-
ing heat tolerance in wheat.

In general, late sowing wheat varieties faces severe temper-
ature stress, shortens the heading and maturity duration, ulti-
mately affecting final yield and grain quality (Hossain and
Teixeira de Silva 2012; Hakim et al. 2012). Therefore, it is
recommended for the development of high yielding wheat
cultivars adapted to semiarid environments to select the geno-
types with early maturity and a relatively long time to heading
(Al-Karaki 2012). Hence, the early planting and the genotypes
with early maturity and a relatively long time to heading are
advocated to evade terminal heat stress and accelerate grain
filling (Khichar and Niwas 2007; Al-Karaki 2012). Therefore,
the maintaining appropriate planting time is one of the most
important agronomic practices for getting optimum plant
growth and yield of wheat under heat-stressed environment
(Kajla et al. 2015).

Modification in planting method could alleviate the ad-
verse impact of heat stress during the reproduction stage
of wheat. Permanent bed planting under zero-tillage with
crop residue retention has already been proposed as the
possible means for improving heat stress tolerance in
wheat plants for Northwest Mexico. Planting of wheat in
conventional tillage with straw mulch increased water
holding capacity, organic carbon, and total nitrogen in soil
and improve tillering capacity resulting to mitigate the
high temperature-induced reduction of grain weight at
the late grain filling stage (Tang et al. 2013).

3.2.3 Use of exogenous protectants

In recent times, exogenously applied several growth-
promoting protectants such as osmoprotectants, phytohor-
mones, signaling molecules and trace elements have resulted
in the potential to protect the plants by neutralizing the harm-
ful and adverse effects of heat stress (Sharma et al. 2012;
Upreti and Sharma 2016). Exogenously applications of these
substances improve thermotolerance in wheat under heat
stress by managing the ROS (Farooq et al. 2011) and upreg-
ulating the antioxidant capacity (Hemantaranjan et al. 2014).
Treating thermo-sensitive wheat plants with several protec-
tants, such as arginine, putrescine (Put), and α-tocopherol
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(vitamin E) have already established their roles in thermo-
tolerance. External application of these molecules have ame-
liorating effects against oxidative stress through activation of
various enzymatic viz. superoxide dismutase, catalase, ascor-
bate peroxidase, glutathione reductase and non-enzymatic viz.
ascorbic acid, tocopherol, and glutathione antioxidants (Balla
et al. 2007). The extensively used various plant bio-regulators
in horticultural crops can be potentially used in field crops
including wheat, and their prospects are now whipped out as
in emerging stress alleviating technology in heat stress envi-
ronment (Ratnakumar et al. 2016). The protective effects of
exogenous application of arginine, putrescine, and tocopherol
on heat-stressed wheat plants are shown in Table 3. Under
abiotic stress condition, naturally occurring several intracellu-
lar polyamines (PAs), such as spermine, spermidine, and pu-
trescine, can play vital roles for sustainable crop production.
Recently, research directed towards polyamine biosynthesis,
catabolism, and its role in abiotic stress tolerance is gaining
priority (Gupta et al. 2013b; Rangan et al. 2014).

3.2.4 Bacterial seed treatment

Varietal improvement through the breeding program is time-
consuming and costly, and gene transformation technology is
not well perceived by many stakeholders. Therefore, using
biological control agents like fungi and bacteria are now con-
sidered as an alternative method of improving heat tolerance
(Raaijmakers et al. 2009). Plant growth-promoting
rhizobacteria are found to be compatible and having a benefi-
cial effect on the growth of wheat plants under heat stress
(Nain et al. 2010). Seed treatment with rhizobacteria and foliar
spray of various organic and inorganic agents enhanced heat
tolerance in wheat (Yang et al. 2009). Seed inoculation with
rhizobacteria also significantly improved heat tolerance in
wheat (Anderson and Habiger 2012). Seed treatment with
Bacillus amyloliquefaciens UCMB5113 and Azospirillum

brasilense NO40 strains were also found to be effective to
increase heat tolerance of wheat seedlings by reducing ROS
generation (Abd El-Daim et al. 2014).

4 Conclusions and future perspective

In the recent past, heat stress was found to lead to enormous
loss of wheat productivity worldwide. Despite carrying out
intensive studies on the deleterious effects of heat stress in
wheat, in-depth understanding of the mechanism of heat tol-
erance remains elusive. So, heat stress tolerance mechanism is
vital for developing a notable strategy of wheat management
under heat stress and forth seeing climate change settings. To
generate heat-tolerant high yielding crops, metabolic and de-
velopment processes associated with heat stress and energy
regulation must be systematically understood. Although a
considerable progress has been achieved in understanding
the heat stress effects on wheat, yet there is a need for further
understanding of the biochemical and molecular basis of heat
tolerance for improvement of the crop yield from upcoming
warmer environments. Molecular knowledge of response and
tolerance mechanisms to harvest sustainable grain yields must
be investigated. To recognize this, the functional genomic
approach would be supportive in the response of wheat to heat
stress.

It is well established that classical and modern molecular
genetics tools integrated with the agronomic management
practices can overcome the complexity of the heat syndrome.
This is why the different biochemical and molecular ap-
proaches and agronomic options are required to explore the
actual effects of heat stress on final crop yield. Moreover, the
exogenous applications of protectants have revealed advanta-
geous effects on heat tolerance improvement in wheat.
Applying microorganisms seem to be a useful tool in agricul-
ture to ameliorate the negative effects of heat stress on wheat

Table 3 Plant responses to exogenous protectants under
heat-stressed conditions

Heat treatment Growth stages Nature of molecules Plant response References

35 ± 2C, 4 or 8 h At 40 days after
sowing (double
ridge stage)

Arginine or Putrescine
(Put) (0.0, 1.25 and
2.5 mM), 4 or 8 h

Decreased peroxidase (POX) and polyphenol-oxidase (PPO)
enzyme activities; enhanced SOD and CAT activities;
increased DNA and RNA contents; reduced MDA level

Khalil et al. (2009)

45°C, 2 h In germinated seeds Put 10 μM Protected membrane integrity in root and shoot by reducing
thiobarbituric acid reactive substances (TBARS); increased
ascorbate and tocopherol content in developing grains;
Elevated activities of enzymatic and non-enzymatic
antioxidants

Asthir et al. (2012)

35°C, 7 days At seedling stage 5 μM α-tocopherol Protected cellular membranes, chlorophyll content, and
photosynthetic functions; improved levels of enzymatic
and non-enzymatic antioxidants

Kumar et al. (2013a)

Agron. Sustain. Dev. (2017) 37: 37 Page 11 of 17 37



plants, but further studies are needed to identify and optimize
the parameters involved in successful microbial performance.

Thus, conventional breeding and modern biotechnological
and molecular tools are an important area for future research.
The actual basis of applying these methods is whether the
plants contain heat tolerance or not. Wheat genotypes are
found to express a substantial level of heat tolerance, although
complete tolerance has not been found hitherto. Most
alarming is that no selection criteria of heat tolerance have
been established. Recently, heat sensitivity indexes for thou-
sand kernel weight and grain filling duration have been
developed.

Ultimately, an intimate collaboration and efforts amongst
molecular biologists, plant physiologists, and breeders is re-
quired. A system-wide phenome to genome analysis is re-
quired to make possible an accurate trait mapping, introgres-
sion of superior alleles, or cloning of major QTLs for heat
tolerance, and such combination will enable us to identify
genes involved in heat tolerance and also the relationships
between phenotypes and genotypes. For obtaining effective
heat tolerance, the transgenic approach must be pooled with
marker-assisted breeding programs for heat stress-related
genes and QTLs.

In view of foreseen global warming, knowledge relating to
molecular basis and mechanism of tolerance is considered to
pave the way for engineering plants that can withstand heat
stress and give satisfactory yield. Despite the fact that there is
a possibility for application of EF-Tu in developing heat tol-
erant and disease resistant wheat varieties by modulating its
expression levels, additional studies are mandatory to explore
the mechanism of action of wheat EF-Tu relative to heat tol-
erance. It is important to note that molecular study affirms
increasing economic crop yield, but full potential yield expres-
sion requires estimation of yield at crop level. So, crop model-
ing system studies are vital to improving heat stress tolerance
and grain yield in wheat.
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