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Abstract The increasing shortage of water resources has
led to the development and adoption of aerobic rice system,
which saves water input and increases water productivity
by reducing water use during land preparation and limiting
seepage, percolation, and evaporation. Aerobic rice also
reduces labor requirement and greenhouse gaseous emis-
sion from rice field. In an aerobic rice system, the crop can
be dry direct-seeded or transplanted and soils are kept
aerobic throughout the growing season. Supplemental
irrigation is applied as necessary. Aerobic rice cultivars
are adapted to aerobic soils and have higher yield potential
than traditional upland cultivars. Grain yields of 5–6 tha−1

can be reached in aerobic rice system. However, yield
decline or even complete failure of aerobic rice under
continuous monocropping threatens the widespread adop-
tion of aerobic rice technology. Here, we review research
findings on possible causes responsible for yield decline of
continuous aerobic rice. Our main findings are: (1) both
biotic and abiotic factors are involved in the continuous
cropping obstacle of aerobic rice; (2) recent research
focused on abiotic factors related to the continuous
cropping obstacle, such as soil pH increase, ammonia
toxicity, and nutrient deficiencies; and (3) strategies which
will help in mitigating the continuous cropping obstacle of

aerobic rice include selection of new aerobic rice cultivars,
nutrient management practice, crop rotation, and soil
acidification. Identifying the causes responsible for
continuous cropping obstacle of aerobic rice and adopting
effective strategies are crucial to achieve sustainability of
aerobic rice.

Keywords Aerobic rice . Continuous monocropping . Yield
decline . Biotic factors . Abiotic factors . Mitigating
strategies
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1 Definition, characteristics, and constraints of aerobic
rice

More than 75% of the rice production comes from
79 million ha of irrigated lowland. However, the sustain-
ability of the irrigated rice systems is increasingly threat-
ened by scarcity of fresh water resources. It was estimated
that 17 million ha of Asia’s irrigated rice may experience
“physical water scarcity” and 22 million ha may experience
“economic water scarcity” by 2025 (Tuong and Bouman
2003). The increasing shortage of water resources accel-
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erates the development and adoption of aerobic rice system.
Aerobic rice is a new term coined by the International Rice
Research Institute (IRRI), for high-yielding rice grown
under nonflooded conditions in nonpuddled and unsaturat-
ed (aerobic) soil, which is responsive to nutrient supply, can
be rainfed or irrigated, and tolerates (occasional) flooding
(Bouman and Tuong 2001). This system has been devel-
oped and adopted by farmers in Brazil, China, and other
Asian countries (Pinheiro et al. 2006; Saito et al. 2006;
Wang et al. 2002). The pictures in Fig. 1 show aerobic rice
in a farmer’s field and experimental plots in Beijing, China.

In broad sense, upland rice can be considered as aerobic
rice because of the availability of oxygen in the soil. In this
review paper, however, aerobic rice is defined in the
context of a water-limited irrigated lowland system without
puddling. The comparisons among irrigated lowland rice,
aerobic rice, rainfed lowland rice, upland rice in water
availability, fertilizer input level, soil preparation, crop
establishment, drought tolerance, and yield level are
presented in Tables 1, 2, and 3.

In aerobic rice production system, soils are kept aerobic
throughout the growing season. Supplemental irrigation is
applied as necessary. The cultivars used are adapted to
aerobic soils and have higher yield potential than traditional
upland cultivars (Atlin et al. 2006). In Asia, upland rice is
aerobically grown with minimal inputs and it is usually
planted as a low-yielding subsistence crop in the adverse
upland conditions (Lafitte et al. 2002). Upland rice cultivars
are drought tolerant, but have a low-yield potential and tend
to lodge with high levels of external inputs such as fertilizer
and supplementary irrigation.

Aerobic rice can be adopted in the following areas:
irrigated areas where water has become so scarce or
expensive that lowland rice cannot be maintained anymore;
rainfed areas where rainfall is insufficient to allow lowland
rice production, but sufficient for aerobic rice; favorable
upland areas where supplementary irrigation is available
and soil problem is minimum; or rainfed areas where

uncontrolled flooding and waterlogging caused by heavy
rainfall and overflowing rivers often threaten the adoption
of upland crops such as maize and soybean (Bouman et al.
2007; Wang et al. 2002).

A key component of success in aerobic rice system is
selection of appropriate cultivars (Wang et al. 2002).
Compared with lowland rice breeding, the aerobic rice
breeding program is extremely small and the genetic basis
is very narrow. Only a few successful aerobic rice cultivars
with high-yield potential and broad biotic and abiotic stress
tolerance are commercially grown. A group of temperate
aerobic rice cultivars, called Han Dao, has been developed
by the breeders from China Agricultural University and are
being commercially grown by farmers in northern China
since the early 1990s (Yang et al. 2002). In 2001, IRRI
started a breeding program to develop tropical aerobic rice
cultivars for the Asian tropics (Bouman 2001) and some
improved tropical upland rice cultivars (such as Apo) that
performed well under aerobic conditions were identified
(George et al. 2002; Lafitte et al. 2002). To achieve high
yields under aerobic conditions, aerobic rice cultivars
should combine the drought-tolerance characteristics of
upland cultivars with the high-yielding characteristics of
lowland cultivars (Lafitte et al. 2002). In northern China
and Brazil, aerobic rice cultivars with high yield potential
and moderate tolerance of drought stress have been
developed through crosses of traditional upland cultivars
with improved irrigated cultivars (Guimaraes and Stone
2000; Wang and Tang 2000).

By reducing water use during land preparation and
limiting seepage, percolation, and evaporation, aerobic rice
had about 51% lower total water use and 32–88% higher
water productivity, expressed as gram of grain per kilogram
of water, than flooded rice (Bouman et al. 2005). The labor
use is also saved in aerobic rice because more labor is
required for land preparation such as puddling, trans-
planting, and irrigation activities in flooded rice (Wang et
al. 2002). Furthermore, aerobic rice cultivation has another

Fig. 1 Aerobic rice in a farmer’s field (left) and experimental plots (right) in Beijing, China

412 Agron. Sustain. Dev. (2012) 32:411–418



merit, which is reducing greenhouse gas emission from rice
field (Mandal et al. 2010).

The grain yields of 5–6 tha−1 have been reported in aerobic
rice system with high-yielding rice cultivars (Bouman et al.
2005, 2006; George et al. 2002; Peng et al. 2006). In Brazil,
aerobic rice cultivars with high grain yields of 5–7
tha−1 have been developed (Castaneda et al. 2002). While,
in northern China, the grain yields of 8 tha−1 and even
higher have been achieved using high-yielding aerobic
rice cultivars under appropriate management practices
(Wang et al. 2002).

It is well-known that weeds are the most severe constraints
to widespread adoption of aerobic rice (Rao et al. 2007). Weed
pressure in dry direct-seeded aerobic rice is significantly
greater than that recorded in transplanted rice (Singh et al.
2008). Weeds in plots with a lower seeding rate have more
chances to emerge, grow, and build up a strong population
and thus pose a serious crop–weed competition. Mahajan et
al. (2010) recommended a higher seeding rate to reduce
weed biomass in dry direct-seeded aerobic rice.

Reduction in plant growth and yield, even yield failure
of aerobic rice, has been reported under continuous
cropping since the 1970s (Table 1). Yield reduction under
continuous monocropping was also reported in other upland

crops such as mungbean, cowpea, and corn (Ventura and
Watanabe 1978). Yield decline/failure of monocropped
aerobic rice is a constraint to the widespread adoption of
aerobic rice technology. The growth inhibition and yield
decline/failure of monocropped aerobic rice are generally
believed to be caused by soil sickness, which was coined by
Nishizawa et al. (1971). Soil sickness may include biotic
factors, such as nematodes (Nishizawa et al. 1971) and soil-
borne pathogens (Ventura et al. 1981), and abiotic factors,
such as changes in soil nutrient availability (Lin et al. 2002)
and toxic substances from root residues (Fageria and
Baligar 2003; Nishio and Kusano 1975a). Researchers have
studied the causes of yield decline/failure in continuously
monocropped aerobic rice, however, the results were
difficult to interpret definitively (Table 2). The magnitude
of yield decline after continuous cropping of aerobic rice
depends strongly on the number of seasons that aerobic rice
was continuously cropped, soil properties, climates, rice
cultivars, and management practices. Despite of many
constraints such as continuous cropping obstacle and weed
infestation in aerobic rice, it still can be considered as a
useful strategy for maintaining the sustainability of rice
production under future water shortage caused by global
climate changes.

2 Causes for continuous cropping obstacle in aerobic
rice

2.1 Biotic factors

Nematodes were generally believed to be the first candidate
among biotic factors responsible for continuous cropping
obstacle in upland rice (Nishizawa et al. 1971; Watanabe et
al. 1963; Watanabe and Yasuo 1960). Kreye et al. (2009a)
reported severe yield failure in continuous aerobic rice even

Table 1 Continuous cropping obstacle reported in aerobic rice since
1970

Year Observation Location Author

1971 Yield decline Japan Nishizawa et al.

1978 Yield decline Philippines Ventura and Watanabe

2000 Yield decline Brazil Guimaraes and Stone

2003 Yield decline Brazil Fageria and Baligar

2006 Yield decline Philippines Peng et al.

2009 Yield failure Philippines Kreye et al.

Table 2 Causes for continuous
cropping obstacle in aerobic rice
reported in the literature

Cause Source

Biotic factors

Nematode Watanabe and Yasuo (1960), Watanabe et al. (1963),
Nishizawa et al. (1971), Kreye et al. (2009a)

Fungi Nishio and Kusano (1973, 1975b)

Abiotic factors

Toxic substances Nishio and Kusano (1975a), Fageria and Baligar (2003)

N deficiency Nie et al. (2008)

Increase in soil pH Kreye et al. (2009c), Xiang et al. (2009)

Ammonia toxicity Haden et al. (2011)

Interaction among biotic and abiotic factors

Biotic and abiotic factors Tuckey (1969), Ventura and Watanabe (1978),
Ventura et al. (1981)

Nematode and micronutrient deficiency Kreye et al. (2009b)
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with high N application (160 or 200 kg Nha−1). Further
research showed that root knot nematodes were the major
contributor to yield failure. However, some researchers
suggested that nematodes were not involved in the soil
sickness of continuous upland rice cropping because no
yield reduction was observed when high population of
nematode was added to soil (Ventura et al. 1981). Nishio
and Kusano (1973, 1975b) examined the fungal flora on
and in roots of continuously cropped upland rice and found
that only Pyrenochaeta sp. was remarkable. Pyrenochaeta
sp. affected the growth of aerobic rice by producing some
substances inhibiting the growth of upland rice seedlings.

The interaction of nematodes and fungi in causing plant
disease due to continuous monocropping has been dis-
cussed by Christie (1960). Ventura et al. (1981) also
reported that the association of nematodes with fungi was
suspected because mere presence of nematode may not be
sufficiently enough to induce growth reduction caused by
continuous cropping. Mountain (1960) documented that
nematode infection even improved the pathogenicity of
other microorganisms in continuously cropped crops.
Continuous cropping changed component, reproduction,
and activities of microorganisms in soil and rhizosphere
(Vancura et al. 1977). In addition to nematodes and fungi,
other microorganisms were also associated with continuous
upland rice cropping (Ventura et al. 1984). Vlasta et al.
(1982) reported that many soil microorganisms were
involved in causing continuous cropping obstacle.

2.2 Abiotic factors

Toxic substances from root residues may cause the crop
growth inhibition in continuously nonflooded rice system
(Ventura and Watanabe 1978). Allelopathy or autotoxicity
(which involves complex plant and plant chemical inter-
actions) was frequently reported, when upland rice was
grown in monoculture for more than 2–3 years on the same
land (Fageria and Baligar 2003).

The mitigating effects of macro and micronutrients on
yield decline caused by continuous cropping of aerobic rice
have been examined in a series of pot and field microplot
experiments conducted at IRRI by Nie et al. (2008). The
results indicated that only N application was effective in

alleviating continuous cropping obstacle in aerobic rice,
while P, K, and micronutrients had no effect. So, N
deficiency might be associated with the continuous crop-
ping obstacle in aerobic rice. In contrast, Kreye et al.
(2009a) found that micronutrient deficiency was partially
responsible for the continuous cropping obstacles at Central
Luzon plain in the Philippines, where yield failure was
observed under continuous aerobic rice cropping.

Increase in soil pH after continuous aerobic rice
monocropping appeared to be the main reason for yield
decline/failure. A long-term field experiment conducted at
IRRI farm with fertile and alluvial clay soil showed a
gradual soil pH increase, which rose from 6.4 at the start of
the experiment to nearly 7.1 after 12 seasons of aerobic
cultivation (Xiang et al. 2009). While the soil pH did not
change significantly after 12 seasons of flooded rice
monocropping, suggesting that increase in soil pH after
continuous aerobic rice monocropping may not be related
to the possible alkalinity of irrigation water. Similarly,
Kreye et al. (2009a) also reported an increase in soil pH
from 6.5 to 8.0 over 2 years, when aerobic rice was
continuously cropped for several seasons at Dapdap
Experimental Station with relatively infertile and alluvial
sandy soil in Central Luzon plain of the Philippines. While
in Northern China, aerobic rice is rotated with winter crops
such as wheat and vegetables and no increase in soil pH has
been reported. Soil acidification using sulfuric acid solution
significantly improved plant growth and N uptake of
aerobic rice grown in the soil with continuous-cropping
obstacle (Xiang et al. 2009). The improvement of aerobic
rice growth after soil acidification suggested that continu-
ous cropping obstacle is probably associated with a
reduction in soil N availability or plant N uptake as the
result of a gradual increase in soil pH after continuous
cropping of aerobic rice.

2.3 Interaction between biotic and abiotic factors

Some scientists believe that both biotic and abiotic factors
partly caused the continuous cropping obstacle in aerobic
rice. Ventura et al. (1981) suggested that interactions among
biotic and abiotic factors were involved in the continuous
cropping obstacle in aerobic rice. Tuckey (1969) reported

Table 3 Comparisons among
irrigated lowland rice, aerobic
rice, rainfed lowland rice, and
upland rice

T transplanting, WDS wet direct
seeding, DDS dry direct seeding

Irrigated lowland rice Aerobic rice Rainfed lowland rice Upland rice

Water availability High Moderate Moderate Low

Fertilizer input level High High Moderate Low

Puddling Yes No Yes No

Crop establishment T/WDS/DDS DDS T/WDS/DDS DDS

Drought tolerance Low Low to Moderate Moderate High

Yield level High Moderate Moderate Low
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that the yield decline of continuous monocropping may be
produced from interwoven factors such as the build-up of
soil-borne pathogens, depletion of a certain mineral
nutrient, adverse change of soil structure due to similar
tillage, and the accumulation of toxic substances. Kreye’s
research indicated that the interaction of root knot nematode
and micronutrients deficiency with increasing soil pH led to
yield failure of continuous aerobic rice (Kreye et al. 2009b).

To separate biotic factors which influence continuous
aerobic rice from the abiotic factors, studies were con-
ducted by sterilizing the soil, such as biocides application
(Kreye et al. 2009b) and soil-heating treatment (Nie et al.
2007; Sasaki et al. 2010) and soil irradiation by γ-rays
(Ventura et al. 1981). Soil sterilization significantly miti-
gated continuous cropping obstacle in aerobic rice (Ladd et
al. 1976; Kreye et al. 2009b; Nie et al. 2007; Rovira 1976),
which suggested that some or all biotic factors were
removed by soil sterilization. However, these soil treat-
ments may have increased soil nutrient availability due to
faster mineralization or transformation of nutrients to
available forms or changed other soil physical and chemical
properties that have an influence on plant growth improve-
ment (Moritsuka et al. 2001, 2006). Nie’s research showed
that oven heating of the continuous aerobic rice soil
increased the release of NH4

+ by 62% compared with
untreated soil although heating did not change the total N
content of the soil (Nie et al. 2007). Sasaki et al. (2010)
reported that inorganic N in the heat-treated soils was three
to seven times higher than that in the untreated continuous
aerobic rice soil. It was suggested that the high concentra-
tion of inorganic N in the heat-treated soils was caused by
the decomposition of easily decomposable organic N in the
soil such as microbial biomass N (Bonde et al. 1988;
Inubushi et al. 1984, 1985; Jenkinson and Ladd 1981). So,
the positive effect of soil sterilization on the plant growth
could not confirm whether continuous cropping obstacle in
aerobic rice was caused by biotic or abiotic factors. Both
biotic and abiotic factors may involve in the continuous
cropping obstacle of aerobic rice, however, recent research
focused more on abiotic factors associated with continuous
cropping obstacle including soil pH increase, nutrient
deficiencies, and ammonia toxicity (Haden et al. 2011;
Kreye et al. 2009c; Nie et al. 2008; Sasaki et al. 2010;
Xiang et al. 2009).

3 Strategies for mitigating continuous cropping obstacle
in aerobic rice

First of all, new aerobic rice cultivars with tolerance to
continuous cropping obstacle should be developed for
widespread adoption of aerobic rice technology. For this
purpose, a pot experiment was conducted to compare the

growth of different aerobic rice cultivars on the soil
collected from the IRRI field where aerobic rice has been
continuously monocropped for 12 seasons (Nie et al.
2009a). The results indicated that different aerobic rice
cultivars showed variations in tolerance to continuous
cropping obstacle. The cultivars with tolerance to continu-
ous cropping obstacle produced much more vigorous root
systems and much more biomass than intolerant cultivars.
Selection of rice cultivars with a large and deep root system
should be considered as an important strategy for achieving
yield stability of continuous aerobic rice. It is interesting to
examine if the growth obstacle will appear eventually after
these tolerant cultivars have been grown for many seasons.

Nitrogen management practices played important roles
in continuous aerobic rice cropping system. It was reported
that N application significantly alleviated continuous
cropping obstacle of aerobic rice (Nie et al. 2008). Further
research showed that different N forms had different effects
on plant growth of rice plants grown aerobically in the soil
with a monocropping history of aerobic rice (Nie et al.
2009a). Among N forms, ammonium sulfate was the most
effective on alleviating the growth inhibition of continuous
aerobic rice (Kreye et al. 2009c; Nie et al. 2009a), which
was demonstrated by a pot experiment showing differences
in aerobic rice growth under five N sources at the N rate of
1.2 gN pot−1 in the continuously monocropped aerobic soil
(Fig. 2). In general, NH4

+ is the dominant N form in paddy
soil (Savant and De Datta 1982) and NO3

− is stable only in
the oxidized rhizosphere (Shen 1969). Yamagata and Ae
(1999) reported that aerobic rice preferentially takes up
NH4

+-N compared with NO3
−-N. Oji and Izawa (1970)

found that NO3
−-N was converted to proteins at the same

rate as NH4
+-N in young rice seedlings, but NO3

−-N was
not absorbed or assimilated as effectively as NH4

+-N. A
higher maize yield was obtained with the application of
ammonium sulfate than with urea due to faster N
immobilization–mineralization turnover and higher N as-
similation by maize plants in the ammonium sulfate
treatment than in the urea treatment (Cabezas et al. 2005).
These results suggest that the increase in soil pH associated
with continuous cropping of aerobic rice could be mitigated
by using the right source of N fertilizer (e.g. ammonium
sulfate).

The culture practices reducing soil pH could maintain
the yield stability of continuous aerobic rice. Yield failure
of aerobic rice has been reported by Kreye et al. (2009a) on
a site where the soil pH increased from 6.5 to 7.4 in 2006
and again from 7.0 to 8.0 in 2007 (Kreye et al. 2009b). As
the pH increases, nutrients generally become less available
for plant uptake (Dobermann and Fairhurst 2000). High soil
pH is also known to affect the losses of N fertilizers from
soil. As the pH rises, an increasing fraction of soil N is
converted from stable ammonium to gaseous ammonia,
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which can be lost to the atmosphere (Ernst and Massey
1960). Soil acidification with sulfuric acid solution signif-
icantly improved growth and N uptake of continuous
aerobic rice, regardless of N rates or N sources (Kreye et
al. 2009c; Xiang et al. 2009). As a management practice,
sulfur application is usually used to reduce soil pH (Roig et
al. 2004).

Fallow and crop rotation mitigates continuous cropping
obstacle in aerobic rice. Two seasons of fallow and three
seasons of rotation with flooded rice significantly reversed
the yield decline of continuous aerobic rice (Nie et al.
2009b). Converting monocropped aerobic rice soil with
sickness into flooded soil substantially improved the plant
growth (Ventura and Watanabe 1978). Soil organic matter
content was increased during conversion from aerobic to
flooded conditions (Nishimura et al. 2008). Changes in soil
organic matter due to different soil management practice,
tillage, and crop rotation were reported to affect crop yields
(Freixo et al. 2002; Friesen et al. 1997). The beneficial
effects of fallow and crop rotation on mitigating continuous
cropping obstacle in aerobic rice were attributed to
improving soil fertility and control of diseases, insects,
and weeds.

Soriano and Reversat (2003) reported that cowpea–
aerobic rice rotation reduced nematode populations and
improved the yield of aerobic rice crop by 30–80%. Among
the upland crops rotated with aerobic rice, maximum yield
of aerobic rice was observed in soybean–aerobic rice
systems (Nie et al. 2009b). In Brazil, the poor yields of
aerobic rice observed after 5 years of monocropping were
reversed after just 1 year of soybean; while after 3 years of
soybean, the effect was even more dramatic (Pinheiro et al.
2006). There are two reasons that may explain the
beneficial effect of soybean–aerobic rice rotation. First,
soybean is a N2-fixing legume which enriches soil N
nutrition. Second, soybean breaks the pests, diseases, and

weeds cycles as found in the case of maize–soybean
rotational systems (Meissle et al. 2010). Even though the
exact causes responsible for yield decline of aerobic rice
monocropping are not fully understood, above strategies
may be helpful to alleviate continuous cropping obstacle in
aerobic rice.

4 Conclusion

Yield decline resulting from continuous cropping of aerobic
rice is a major constraint to the widespread adoption of
aerobic rice technology. The exact causes of the yield
decline in the continuous aerobic rice system are still not
known. Identifying the causes responsible for continuous
cropping obstacle of aerobic rice and developing mitigation
strategies are crucial to achieve sustainability of aerobic rice
production. Research on identifying biotic and abiotic
factors associated with continuous cropping obstacle of
aerobic rice has been conducted. Both biotic and abiotic
factors were reported to be responsible for the yield decline
of continuously monocropped aerobic rice, however,
abiotic factors such as soil pH increase, nutrient deficien-
cies, and ammonia toxicity have received more attention in
recent years. Strategies to overcome continuous cropping
obstacle of aerobic rice have been developed. These
strategies include crop rotation, N management practice,
soil acidification, and cultivar improvement. Most of the
current research on yield stability of aerobic rice has been
conducted at IRRI farm and the results could be site-
specific. It is necessary to study the sustainability of aerobic
rice in diverse environments with different soil physical and
chemical properties, soil fertility, and water availability.
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