Skip to main content
Log in

Effect of exogenous nitric oxide on vegetative and reproductive growth of oriental lily ‘Siberia’

  • Research Report
  • Others
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Recent studies have shown that nitric oxide (NO) may be involved in diverse plant developmental processes as an important signal molecule. However, the effects of NO on vegetative and reproductive growth of intact plants are not fully understood. In our study, the NO donor sodium nitroprusside (SNP) at 3,000, 6,000 and 9,000 μM was used to characterize the roles of NO in vegetative and reproductive growth of “Siberia” lily. The results showed that the effects of NO on growth in “Siberia” lily were dose-dependent. Compared with the control (distilled water treatment), 3,000 μM SNP caused a significant increase in plant height and internode length. Significant differences were recorded in flowering period, lifetime of individual flowers, number of flowers per plant, flower diameter, and bud length with 6,000 μM SNP. However, 9,000 μM SNP resulted in negative effects on these parameters as compared to the control. Moreover, 3,000 μM SNP caused a significant increase in the contents of leaf chlorophyll, water soluble carbohydrate (WSC), starch, total carbohydrate, total soluble protein, and total nitrogen, all of which were decreased by high levels of SNP (9,000 μM). Together, these results indicated that NO treatments at the proper dosage can promote vegetative and reproductive growth, possibly by improving the levels of leaf chlorophyll, WSC, starch, total carbohydrate, total soluble protein and total nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Kader, D.Z.E.A. 2007. Role of nitric oxide on iron homeostasis, chlorophyll biosynthesis and antioxidants system in two wheat cultivars. Am. J. Plant Physiol. 2:237–250.

    Article  CAS  Google Scholar 

  • Arrom, L. and S. Munné-Bosch. 2012. Sucrose accelerates flower opening and delays senescence through a hormonal effect in cut lily flowers. Plant Sci. 188-189:41–47.

    Article  CAS  PubMed  Google Scholar 

  • Bowyer, M.C., R.B.H. Wills, D. Badiyan, and V.V.V. Ku. 2003. Extending the postharvest life of carnations with nitric oxide - comparison of fumigation and in vivo delivery. Postharvest Biol. Technol. 30:281–286.

    Article  CAS  Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Article  CAS  PubMed  Google Scholar 

  • Daszkowska-Golec, A. and I. Szarejko. 2013. Open or close the gate — stomata action under the control of phytohormones in drought stress conditions. Front. Plant Sci. 4:138.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dhiman, M.R. and C. Parkash. 2013. Role of nitric oxide donor compound to extend the vase life of Lilium cut flower. Int. J. Agric. Inno. Res. 2:258–262.

    Google Scholar 

  • Dinler, B.S., C. Antoniou, and V. Fotopoulos. 2014. Interplay between GST and nitric oxide in the early response of soybean (Glycine max L.) plants to salinity stress. J. Plant Physiol. 171:1740–1747.

    Article  CAS  PubMed  Google Scholar 

  • Du, J., M.L. Li, D.D. Kong, L. Wang, Q. Lv, J.Z. Wang, F. Bao, Q.Q. Gong, J.C. Xia, and Y.K. He. 2014. Nitric oxide induces cotyledon senescence involving co-operation of the NES1/MDA1 and EIN2-associated ORE1 signalling pathways in Arabidopsis. J. Exp. Bot. 65:4051–4063.

    Article  PubMed Central  PubMed  Google Scholar 

  • Duan, X.H., X.N. Li, F. Ding, J. Zhao, A.F. Guo, L. Zhang, J. Yao, and Y.L. Yang. 2015. Interaction of nitric oxide and reactive oxygen species and associated regulation of root growth in wheat seedlings under zinc stress. Ecotox. Environ. Safe. 113:95–102.

    Article  CAS  Google Scholar 

  • Esim, N. and O. Atici. 2014. Nitric oxide improves chilling tolerance of maize by affecting apoplastic antioxidative enzymes in leaves. Plant Growth Regul. 72:29–38.

    Article  CAS  Google Scholar 

  • Eum, H.L., D.K. Hwang, and S.K. Lee. 2009. Nitric oxide reduced chlorophyll degradation in broccoli (Brassica oleracea L. Var. italica) florets during senescence. Food Sci. Technol. Int. 15:223–228.

    CAS  Google Scholar 

  • Fan, H.F., C.X. Du, L. Ding, and Y.L. Xu. 2014. Exogenous nitric oxide promotes waterlogging tolerance as related to the activities of antioxidant enzymes in cucumber seedlings. Russ. J. Plant Physiol. 61:336–373.

    Article  Google Scholar 

  • Gould, K.S., O. Lamotte, A. Klinguer, A. Pugin, and D. Wendehenne. 2003. Nitric oxide production in tobacco leaf cells: a generalized stress response? Plant Cell Environ. 26:1851–1862.

    Article  CAS  Google Scholar 

  • Guo, J.X., E.Y. Chen, Y.P. Yin, P. Wang, Y. Li, X.G. Chen, G.L. Wu, and Z.L. Wang. 2013. Nitric oxide content in wheat leaves and its relation to programmed cell death of main stem and tillers under different nitrogen levels. J. Integr. Agric. 12:239–250.

    Article  Google Scholar 

  • He, J.Y., Y.F. Ren, X.L. Chen, and H. Chen. 2014. Protective roles of nitric oxide on seed germination and seedling growth of rice (Oryza sativa L.) under cadmium stress. Ecotox. Environ. Safe. 108:114–119.

    Article  CAS  Google Scholar 

  • Jacobsen, J.V., J.M. Barrero, T. Hughes, M. Julkowska, J.M. Taylor, Q. Xu, and F. Gubler. 2013. Roles for blue light, jasmonate and nitric oxide in the regulation of dormancy and germination in wheat grain (Triticum aestivum L.). Planta. 238:121–138.

    Article  CAS  PubMed  Google Scholar 

  • Jasid, S., A. Galatro, J.J. Villordo, S. Puntarulo, and M. Simontacchi. 2009. Role of nitric oxide in soybean cotyledon senescence. Plant Sci. 176:662–668.

    Article  CAS  Google Scholar 

  • Knowles, N.R. and S.K. Ries. 1981. Rapid growth and apparent total nitrogen increases in rice and corn plants following applications of triacontanol. Plant Physiol. 68:1279–1284.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krasuska, U., K. Ciacka, K. Debska, R. Bogatek, and A. Gniazdowska. 2014. Dormancy alleviation by NO or HCN leading to decline of protein carbonylation levels in apple (Malus domestica Borkh.) embryos. J. Plant Physiol. 171:1132–1141.

    Article  CAS  PubMed  Google Scholar 

  • Langens-Gerrits, M.M., W.B.M. Miller, A.F. Croes, and G-J. de Klerk. 2003. Effect of low temperature on dormancy breaking and growth after planting in lily bulblets regenerated in vitro. Plant Growth Regul. 40:267–275.

    Article  CAS  Google Scholar 

  • Leshem, Y.Y., R.B.H. Wills, and V. V- V. Ku. 1998. Evidence for the function of the free radical gas - nitric oxide (NO·) - as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol. Biochem. 36:825–833.

    Article  CAS  Google Scholar 

  • Liao, W.B., H.L. Xiao, and M.L. Zhang. 2009. Role and relationship of nitric oxide and hydrogen peroxide in adventitious root development of marigold. Acta Physiol. Plant. 31:1279–1289.

    Article  CAS  Google Scholar 

  • Liao, W.B., H.L. Xiao, and M.L. Zhang. 2010. Effect of nitric oxide and hydrogen peroxide on adventitious root development from cuttings of ground-cover chrysanthemum and associated biochemical changes. J. Plant Growth Regul. 29:338–348.

    Article  CAS  Google Scholar 

  • Liao, W.B., G.B. Hang, J.H. Yu, and M.L. Zhang. 2012a. Nitric oxide and hydrogen peroxide alleviate drought stress in marigold explants and promote its adventitious root development. Plant Physiol. Biochem. 58:6–15.

    Article  CAS  PubMed  Google Scholar 

  • Liao, W.B., M.L. Zhang, G.B. Huang, and J.H. Yu. 2012b. Ca 2+ and CaM are involved in NO- and H2O2-induced adventitious root development in marigold. J. Plant Growth Regul. 31:253–264.

    Article  CAS  Google Scholar 

  • Liao, W.B., M.L. Zhang, and J.H. Yu. 2013. Role of nitric oxide in delaying senescence of cut rose flowers and its interaction with ethylene. Sci. Hortic. 155:30–38.

    Article  CAS  Google Scholar 

  • Lin, Y., Z.Z. Liu, Q.H. Shi, X.F. Wang, M. Wei, and F.J. Yang. 2012. Exogenous nitric oxide (NO) increased antioxidant capacity of cucumber hypocotyl and radicle under salt stress. Sci. Hortic. 142:118–127.

    Article  CAS  Google Scholar 

  • Liu, F. and F.Q. Guo. 2013. Nitric oxide deficiency accelerates chlorophyll breakdown and stability loss of thylakoid membranes during dark-induced leaf senescence in Arabidopsis. PLoS One 8:e56345.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu, S.Y., C.L. Zhuo, X.H. Wang, and Z.F. Guo. 2014. Nitrate reductase (NR)-dependent NO production mediates ABA- and H2O2-induced antioxidant enzymes. Plant Physiol. Biochem. 74:9–15.

    Article  CAS  PubMed  Google Scholar 

  • Magalhaes, J.R., D.C. Monte, and D. Durzan. 2000. Nitric oxide and ethylene emission in Arabidopsis thaliana. Physiol. Mol. Biol. Plants 6:117–127.

    Google Scholar 

  • Manai, J., T. Kalai, H. Gouia, and F.J. Corpas. 2014. Exogenous nitric oxide (NO) ameliorates salinity-induced oxidative stress in tomato (Solanum lycopersicum) plants. J. Soil. Sci. Plant Nut. 14:433–446.

    Google Scholar 

  • Morvan-Bertrand, A., J. Boucaud, and M-P. Prud’homme. 1999. Influence of initial levels of carbohydrates, fructans, nitrogen, and soluble proteins on regrowth of Lolium perenne L. cv. Bravo following defoliation. J. Exp. Bot. 50:1817–1826.

    Article  CAS  Google Scholar 

  • Noodén, L.D., J.J. Guiamét, and I. John. 1997. Senescence mechanisms. Physiol. Plant. 101:746–753.

    Article  Google Scholar 

  • Ördög, A., B. Wodala, T. Rózsavölgyi, I. Tari, and F. Horváth. 2013. Regulation of guard cell photosynthetic electron transport by nitric oxide. J. Exp. Bot. 64:1357–1366.

    Article  PubMed  Google Scholar 

  • Ozcubukcu, S. and N. Ergun. 2013. Effects of waterlogging and nitric oxide on chlorophyll and carotenoid pigments of wheat. J. Food Agric. Environ. 11:2319–2323.

    Google Scholar 

  • Pagnussat, G.C., M.L. Lanteri, M.C. Lombardo, and L. Lamattina. 2004. Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol. 135:279–286.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petro, A., N. Lehotai, J. Lozano-Juste, J. León, I. Tari, L. Erdei, and Z. Kolbert. 2011. Involvement of nitric oxide and auxin in signal transduction of copper-induced morphological responses in Arabidopsis seedlings. Ann. Bot. 108:449–457.

    Article  Google Scholar 

  • Piterková, J., L. Luhová, J. Hofman, V. Turecková, O. Novák, M. Petrivalský, and M. Fellner. 2012. Nitric oxide is involved in light-specific responses of tomato during germination under normal and osmotic stress conditions. Ann. Bot. 110:767–776.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pressman, E., R. Shaked, S. Shen, L. Altahan, and N. Firon. 2012. Variations in carbohydrate content and sucrose-metabolizing enzymes in tomato (Solanum lycopersicum L.) stamen parts during pollen maturation. Am. J. Plant Sci. 3:252–260.

    Article  CAS  Google Scholar 

  • Quirino, B.F., Y-S. Noh, and E. Himelblau. 2000. Molecular aspects of leaf senescence. Plant Sci. 5:278–282.

    Article  CAS  Google Scholar 

  • Santa-Cruz, D.M., N.A. Pacienza, A.H. Polizio, K.B. Balestrasse, M.L. Tomaro, and G.G. Yannarelli. 2010. Nitric oxide synthase-like dependent NO production enhances heme oxygenase up-regulation in ultraviolet-b-irradiated soybean plants. Phytochemistry 71:1770–1707.

  • Santa-Cruz, D.M., N.A. Pacienza, C.G. Zilli, M.L. Tomaro, K.B. Balestrasse, and G.G. Yannarelli. 2014. Nitric oxide induces specific isoforms of antioxidant enzymes in soybean leaves subjected to enhanced ultraviolet-B radiation. J. Photochem. Photobiol., B 141: 202–209.

    Article  CAS  Google Scholar 

  • Saxena, I. and G.S. Shekhawat. 2013. Nitric oxide (NO) in alleviation of heavy metal induced phytotoxicity and its role in protein nitration. Nitric Oxide. 32:13–20.

    Article  CAS  PubMed  Google Scholar 

  • Schlicht, M., J. Ludwig-Müller, C. Burbach, D. Volkmann, and F. Baluska. 2013. Indole-3-butyric acid induces lateral root formation via peroxisome-derived indole-3-acetic acid and nitric oxide. New Phytol. 200:473–482.

    Article  CAS  PubMed  Google Scholar 

  • Scuffi, D., C. Álvarez, N. Laspina, C. Gotor, L. Lamattina, and C. García-Mata. 2014. Hydrogen sulfide generated by 1-cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid- dependent stomatal closure. Plant Physiol. 166:2065–2076.

    Article  PubMed  Google Scholar 

  • Shen, W.B., W. Xuan, S. Xu, M.Y. Li, B. Han, B. Zhang, J. Zhang, Y.T. Lin, J.J. Huang, and J. Cui. 2012. Nitric oxide is involved in hemin-induced cucumber adventitious rooting process. J. Plant Physiol. 169:1032–1039.

    Article  PubMed  Google Scholar 

  • Shi, J.Y., N. Liu, R.X. Gu, L.Q. Zhu, C. Zhang, Q.G. Wang, Z.H. Lei, Y.Y. Liu, and J.Y. Ren. 2015. Signals induced by exogenous nitric oxide and their role in controlling brown rot disease caused by Monilinia fructicola in postharvest peach fruit. J. Gen. Plant Pathol. 81:68–76.

    Article  CAS  Google Scholar 

  • Simontacchi, M., C. García-Mata, C.G. Bartoli, G.E. Santa-María, and L. Lamattina. 2013. Nitric oxide as a key component in hormone-regulated processes. Plant Cell Rep. 32:853–866.

    Article  CAS  PubMed  Google Scholar 

  • Šírová, J., M. Sedlárová, J. Piterková, L. Luhová, and M. Petrivalský. 2011. The role of nitric oxide in the germination of plant seeds and pollen. Plant Sci. 181:560–572.

    Article  PubMed  Google Scholar 

  • Song, J., G.W. Shi, S. Xing, M. Chen, and B.S. Wang. 2009. Effects of nitric oxide and nitrogen on seedling emergence, ion accumulation, and seedling growth under salinity in the euhalophyte Suaeda salsa. J. Plant Nut. Soil Sci. 172:544–549.

    Article  CAS  Google Scholar 

  • Tan, J.L., C.L. Zhuo, and Z.F. Guo. 2013. Nitric oxide mediates coldand dehydration-induced expression of a novel MfHyPRP that confers tolerance to abiotic stress. Physiol. Plant. 149:310–320.

    CAS  PubMed  Google Scholar 

  • Xu, W., K.H. Cui, A.H. Xu, L.X. Nie, J.L. Huang, and S.B. Peng. 2015. Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings. Acta Physiol. Plant. 37:9.

  • Yamasaki, H. 2000. Nitrite-dependent nitric oxide production pathway: implications for involvement of active nitrogen species in photoinhibition in vivo. Philos. T. R. Soc. B. 355:1477–1488.

    Article  CAS  Google Scholar 

  • Yang, B.N., J.Z. Wu, F.M. Gao, J. Wang, and G.X. Su. 2014. Polyamine-induced nitric oxide generation and its potential requirement for peroxide in suspension cells of soybean cotyledon node callus. Plant Physiol. Biochem. 79:41–47.

    Article  PubMed  Google Scholar 

  • Younis, A., Y. J. Hwang, and K-B. Lim. 2014. Exploitation of induced 2n-gametes for plant breeding. Plant Cell Rep. 33:215–223.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, C.L., L. Liu, and G.Q. Xu. 2011. The physiological responses of carnation cut flowers to exogenous nitric oxide. Sci. Hortic. 127:424–430.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Biao Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Li, B., Zhu, YC. et al. Effect of exogenous nitric oxide on vegetative and reproductive growth of oriental lily ‘Siberia’. Hortic. Environ. Biotechnol. 56, 677–686 (2015). https://doi.org/10.1007/s13580-015-0051-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-015-0051-z

Additional key words

Navigation