Skip to main content
Log in

Differences in fennel seed responses to drought stress at the seed formation stage in sensitive and tolerant genotypes

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

To understand the effects of drought on fennel seed production and determine the underlying molecular processes, various fennel genotypes were exposed to drought stress. The yield and quality, including aromatic oil content, of fennel seeds were reduced by drought during seed development. To explore drought-induced biological processes in fennel, a label-free/gel-free proteomic analysis was performed. In Gaziantep and Tatmaj cultivars, which are sensitive and tolerant fennel genotypes, respectively, 106 and 92 drought-responsive proteins were identified. Comparison of protein-functional profiles indicated that proteins classified in stress, cell, and protein synthesis/degradation categories consisted important responsive mechanisms against drought stress. Pathway analysis visualized that the tricarboxylic acid cycle is important for both cultivars. In Tatmaj, moderate activation of proteins related to oxidative pentose phosphate pathway was detected along with an increase in photosynthesis-related proteins. Furthermore, cluster analysis of drought-responsive proteins using protein abundance at milky, dough, and mature stages identified protein homeostasis as a mechanism of drought tolerance in fennel. These results suggest that coordinated energy consumption and supply might be a drought-tolerance mechanism in fennel plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

TCA:

Tricarboxylic acid

OPP:

Oxidative pentose phosphate

ROS:

Reactive oxygen species

MS:

Mass spectrometry

LC:

Liquid chromatography

References

  • Ahuja I, deVos RCH, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15:664–674

    Article  PubMed  CAS  Google Scholar 

  • Aprotosoaie AC, Şpac A, Hăncianu M, Miron A, Tănăsescu VF, Dorneanu V, Stănescu U (2010) The chemical profile of essential oils obtained from fennel fruits (Foeniculum vulgare MILL.). Farmacia 58:46–53

    CAS  Google Scholar 

  • Askari E, Ehsanzadeh P (2015) Drought stress mitigation by foliar application of salicylic acid and their interactive effects on physiological characteristics of fennel (Foeniculum vulgare Mill.) genotypes. Acta Physiol Plant 37:4

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Caruso G, Cavaliere C, Guarino C, Gubbiotti R, Foglia P, Laganà A (2008) Identification of changes in Triticum durum L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Anal Bioanal Chem 391:381–390

    Article  PubMed  CAS  Google Scholar 

  • Choi E, Hwang J (2004) Antiinflammatory analgesic and antioxidant activities of the fruit of Foeniculum vulgare. Fitoterapia 75:57–565

    Google Scholar 

  • Diaaz-Maroto MC, Pea rez-Coello MS, Esteban J, Sanz J (2006) Comparison of the volatile composition of wild fennel samples (Foeniculum vulgare Mill.) from Central Spain. J Agric Food Chem 54:814–6818

    Article  CAS  Google Scholar 

  • Ehsanipour A, Razmjoo J, Zeinali H (2012) Effect of nitrogen rates on yield and quality of fennel (Foeniculum vulgare Mill.) accessions. Ind Crops Prod 35:121–125

    Article  Google Scholar 

  • Farooq M, Wahid A, Komayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Figueredo G, Chalchat JC, Al Juhaimi FY, Özcan MM (2012) Effect of harvest years on chemical composition of essential oil of bitter fennel (Foeniculum vulgare subsp. piperitum) leaves. Asian J Chem 24:2228–2230

    CAS  Google Scholar 

  • Ge P, Ma C, Wang S, Gao L, Li X, Guo G, Ma W, Yan Y (2012) Comparative proteomic analysis of grain development in two spring wheat varieties under drought stress. Anal Bioanal Chem 402:1297–1313

    Article  PubMed  CAS  Google Scholar 

  • Johnson ER, McKay DB (1999) Crystallographic structure of the amino terminal domain of yeast initiation factor 4A, a representative DEAD-box RNA helicase. RNA 5:1526–1534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Komatsu S, Han C, Nanjo Y, Altaf-Un-Nahar M, Wang K, He D, Yang P (2013a) Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding. J Proteome Res 12:4769–4784

    Article  PubMed  CAS  Google Scholar 

  • Komatsu S, Nanjo Y, Nishimura M (2013b) Proteomic analysis of the flooding tolerance mechanism in mutant soybean. J Proteomics 79:231–250

    Article  PubMed  CAS  Google Scholar 

  • Kurek I, Chang TK, Bertain SM, Madrigal A, Liu L, Lassner MW, Zhu G (2007) Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress. Plant Cell 19:3230–3241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lannoo N, Van Damme EJ (2015) Review/N-glycans: the making of a varied toolbox. Plant Sci 239:67–83

    Article  PubMed  CAS  Google Scholar 

  • Li L, Nelson CJ, Trösch J, Castleden I, Huang S, Millar AH (2017) Protein degradation rate in Arabidopsis thaliana leaf growth and development. Plant Cell 29:207–228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marino SD, Gala F, Borbone N, Zollo F, Vitalini S, Visioli F, Iorizzi M (2007) Phenolic glycosides from Foeniculum vulgare fruit and evaluation of antioxidative activity. Phytochemistry 68:1805–1812

    Article  PubMed  CAS  Google Scholar 

  • Mohamed M, Abdu M (2004) Growth and oil production of fennel: effect of irrigation and organic fertilization. Bio Agric Hortic 22:31–39

    Article  Google Scholar 

  • Mustafa G, Komatsu S (2014) Quantitative proteomics reveals the effect of protein glycosylation in soybean root under flooding stress. Front Plant Sci 5:627

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozcan MM, Chalchat JC, Arslan D, Ate A, Unver A (2006) Comparative essential oil composition and antifungal effect of bitter fennel (Foeniculum vulgare ssp. piperitum) fruit oils obtained during different vegetation. J Med Food 9:552–561

    Article  PubMed  CAS  Google Scholar 

  • Piccaglia R, Marotti M (2001) Characterization of some Italian types of wild fennel (Foeniculum vulgare Mill.). J Agric Food Chem 49:239–244

    Article  PubMed  CAS  Google Scholar 

  • Qureshi I, Qadir S, Zolla L (2007) Proteomics-based dissection of stress-responsive pathways in plants. J Plant Physiol 16:1239–1260

    Article  CAS  Google Scholar 

  • Radchuk V, Borisjuk L (2014) Physical, metabolic and developmental functions of the seed coat. Front Plant Sci 5:e510

    Article  Google Scholar 

  • Raines CA, Paul MJ (2006) Products of leaf primary carbon metabolism modulate the developmental programme determining plant morphology. J Exp Bot 57:1857–1862

    Article  PubMed  CAS  Google Scholar 

  • Sade B, Soylu S, Yetim E (2011) Drought and oxidative stress. Afr J Biotechnol 10:11102–11109

    Article  CAS  Google Scholar 

  • Senatore F, Oliviero F, Scandolera E, Taglialatela-Scafati O, Roscigno G, Zaccardelli M, De Falco E (2013) Chemical composition, antimicrobial and antioxidant activities of anethole-rich oil from leaves of selected varieties of fennel [Foeniculum vulgare Mill. ssp. vulgare var. azoricum (Mill.) Thell]. Fitoterapia 90:214–219

    Article  PubMed  CAS  Google Scholar 

  • Shahat AA, Ibrahim AY, Hendawy SF, Omer EA, Hammouda FM, Abdel-Rahman FH, Saleh MA (2011) Chemical composition, antimicrobial and antioxidant activities of essential oils from organically cultivated fennel cultivars. Molecules 16:1366–1377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stefanini MB, Ming LC, Marques MOM, Facanali R, Meireles MAA, Moura LS, Marchese JA, Sousa LA (2006) Essential oil constituents of different organs of fennel (Foeniculum vulgare var. vulgare). Rev Bras Plantas Med 8:193–198

    Google Scholar 

  • Tahaei A, Soleymani A, Shams M (2016) Seed germination of medicinal plant, fennel (Foeniculum vulgare Mill), as affected by different priming techniques. Appl Biochem Biotechnol 180:26–40

    Article  PubMed  CAS  Google Scholar 

  • Templer SE, Ammon A, Pscheidt D, Ciobotea O, Schuy C, McCollum C, Sonnewald U, Hanemann A, Förster J, Ordon F, von Korff M, Voll LM (2017) Metabolite profiling of barley flag leaves under drought and combined heat and drought stress reveals metabolic QTLs for metabolites associated with antioxidant defense. J Exp Bot 68:1697–1713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Timabud T, Yin X, Pongdontri P, Komatsu S (2015) Gel-free/label-free proteomic analysis of developing rice grains under heat stress. J Proteom 133:1–19

    Article  CAS  Google Scholar 

  • Urban MO, Vašek J, Klíma M, Krtková J, Kosová K, Prášil IT, Vítámvás P (2017) Proteomic and physiological approach reveals drought-induced changes in rapeseeds: Water-saver and water-spender strategy. J Proteom 152:188–205

    Article  CAS  Google Scholar 

  • Usadel B, Nagel A, Thimm O, Redestig H, Blaesing OE, Palacios-Rofas N, Selbig J, Hannemann J, Piques MC, Steinhauser D, Scheible WR, Gibon Y, Morcuende R, Weicht D, Meyer S, Stitt M (2005) Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of corresponding 31 genes, and comparison with known databases. Plant Physiol 138:1195–1204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Usadel B, Poree F, Nagel A, Lohse M, Czedik-Eysenberg A, Stitt M (2009) A guide to using MapMan to visualize and compare Omics data in plants: a case study in the crop species, Maize. Plant Cell Environ 32:1211–1229

    Article  PubMed  Google Scholar 

  • Yrjönen T, Eeva M, Kauppila TJ, Martiskainen O, Summanen J, Vuorela P, Vuorela H (2016) Profiling of coumarins in Peucedanum palustre (L.) Moench populations growing in Finland. Chem Biodivers 13:700–709

    Article  PubMed  CAS  Google Scholar 

  • Zahid NY, Abbasi NA, Hafiz IA, Ahmad Z (2009) Genetic diversity of indigenous fennel germplasm in Pakistan assessed by RAPD marker. Pak J Bot 41:1759–1767

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. X. Wang at the University of Tsukuba for experimental support and data analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Setsuko Komatsu.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodadadi, E., Hashiguchi, A., Fakheri, B.A. et al. Differences in fennel seed responses to drought stress at the seed formation stage in sensitive and tolerant genotypes. J. Plant Biochem. Biotechnol. 28, 35–49 (2019). https://doi.org/10.1007/s13562-018-0461-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-018-0461-y

Keywords

Navigation