Skip to main content
Log in

Wsi18 promoter from wild rice genotype, Oryza nivara, shows enhanced expression under soil water stress in contrast to elite cultivar, IR20

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Identification and characterization of plant promoters from wild rice genotypes showing inducible expression under soil water stress (SWS) is desirable for transgene expression to generate stress tolerant rice cultivars. A comparative expression profiling of Wsi18, a group 3 LEA gene, revealed differential response under SWS conditions between modern cultivated rice (IR20) and its wild progenitor (Oryza nivara). Wsi18 promoter from O. nivara showed enhanced inducible expression of the reporter gusA gene, encoding β-glucuronidase, in transgenic rice plants in comparison to similar promoter from IR20. Deletion analysis unravelled the cis-acting regulatory elements minimally required for optimal expression of Wsi18 promoter from O. nivara under SWS condition. This is the first report of characterization of an inducible promoter from a wild rice genotype to drive the gene expression under water stress conditions. The Wsi18 promoter element from the wild rice genotype can be used in future genetic manipulation strategies for the generation of SWS tolerant rice cultivars with improved yield characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SWS:

Soil water stress

LEA:

Late embryogenesis abundant

ABA:

Abscisic acid

BS:

Before stress

AS:

After stress

AR:

After recovery

TF:

Transcription factor

GUS:

β-glucuronidase

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signalling. Plant Cell 15:63–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274

    Article  CAS  PubMed  Google Scholar 

  • Bhunia RK, Chakraborty A, Kaur R, Gayatri T, Bhattacharyya J, Basu A, Maiti MK, Sen SK (2014) Seed-specific increased expression of 2S albumin promoter of sesame qualifies it as a useful genetic tool for fatty acid metabolic engineering and related transgenic intervention in sesame and other oil seed crops. Plant Mol Biol 86:351–365

    Article  CAS  PubMed  Google Scholar 

  • Bhunia RK, Chakraborty A, Kaur R, Maiti MK, Sen SK (2016) Enhancement of α-linolenic acid content in transgenic tobacco seeds by targeting a plastidial ω-3 fatty acid desaturase (fad7) gene of Sesamum indicum to ER. Plant Cell Rep 35:213–226

    Article  CAS  PubMed  Google Scholar 

  • Brar DS, Khush GS (1997) Alien introgression in rice. Plant Mol Biol 35:35–47

    Article  CAS  PubMed  Google Scholar 

  • Chang TT (2003) Origin, domestication and diversification. In: Smith CW, Dilday RH (eds) Rice: origin, History. Technology and Production. John Wiley & Sons Inc, Hoboken, pp. 3–25

    Google Scholar 

  • Checker VG, Chhibbar AK, Khurana P (2012) Stress-inducible expression of barley Hva1 gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress. Transgenic Res 21:939–957

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, Targolli J, Huang X, Wu R (2002) Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Mol Breed 10:71–82

    Article  CAS  Google Scholar 

  • Choi H, Hong JH, Ha J, Kang JY, Kim SY (2000) ABFs, a family of ABA-responsive elements binding factors. J Biol Chem 275:1723–1730

    Article  CAS  PubMed  Google Scholar 

  • Choudhury B, Khan ML, Dayanandan S (2013) Genetic structure and diversity of indigenous rice (Oryza sativa) varieties in the Eastern Himalayan region of Northeast India. Springerplus 2:228

    Article  PubMed  PubMed Central  Google Scholar 

  • Degenkolbe T, Do PT, Zuther E, Repsilber D, Walther D, Hincha DK, Kohl KI (2009) Expression profiling of rice cultivars differing in their tolerance to long-term drought stress. Plant Mol Bio 69:133–153

    Article  CAS  Google Scholar 

  • Duan J, Cai W (2012) OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance. PLoS one 7:e45117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61:3211–3222

    Article  CAS  PubMed  Google Scholar 

  • Gaudin ACM, Henry A, Sparks AH, Slamet-Loedin IH (2012) Taking transgenic rice drought screening to the field. J Exp Bot 64:109–117

    Article  PubMed  Google Scholar 

  • Hiei Y, Ohtac S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Kurata N, Wei X, Wang Z-X, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, Guo Y, Lu Y, Zhou C, Fan D, Weng Q, Zhu C, Huang T, Zhang L, Wang Y, Feng L, Furuumi H, Kubo MT, Yuan X, Xu Q, Dong G, Zhan Q, Li C, Fujiyama A, Toyoda A, Lu T, Feng Q, Qian Q, Li J, Han B (2012) A map of rice genome variation reveals the origin of cultivated rice. Nature 490:497–501

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joshee N, Kisaka H, Kitagawa Y (1998) Isolation and characterization of a water stress-specific genomic gene, pwsi18, from rice. Plant Cell Physiol 39:64–72

    Article  CAS  PubMed  Google Scholar 

  • Juneja S, Das A, Joshi SV, Sharma S, Vikal Y, Patra BC, Bharaj TS, Sidhu JS, Singh K (2006) Oryza nivara (Sharma et Shastry) the progenitor of O. sativa (L.) subspecies indica harbours rich genetic diversity as measured by SSR markers. Curr Sci 91:1079–1085

    CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  CAS  PubMed  Google Scholar 

  • Khurana P, Vishnudasan D, Chhibbar AK (2008) Genetic approaches towards overcoming water deficit in plants- special emphasis on LEAs. Physiol Mol Biol Plants 14:277–298

    Article  CAS  PubMed  Google Scholar 

  • Khush GS, Ling KC, Aquino RC, Aguiero VM (1977) Breeding for resistance to grassy stunt in rice. In: Proceedings of the 3rd international congress of the society for the advancement of breeding researchers in Asia and Oceania (SABRAO). Canberra, 12–13 Feb 1977

  • Kumar GR, Sakthivel K, Sundaram RM, Neeraja CN, Balachandran SM, Rani NS, Viraktamath BC, Madhav MS (2010) Allele mining in crops: prospects and potentials. Biotechnol Adv 28(4):451–461

    Article  CAS  PubMed  Google Scholar 

  • Lal S, Gulyani V, Khurana P (2008) Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). Transgenic Res 17:651–663

    Article  CAS  PubMed  Google Scholar 

  • Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucl Acids Res 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Luo K, Zhang G, Deng W, Luo F, Qin K, Pei Y (2008) Functional characterization of a cotton late embryogenesis abundant D-113 gene promoter in transgenic tobacco. Plant Cell Rep 27:707–717

    Article  CAS  PubMed  Google Scholar 

  • Mitchell JH, Siamhan D, Wamala MH, Risimeri JB, Chinyamakobvu E, Henderson SA, Fukai S (1998) The use of seedling leaf death score for evaluation of drought resistance of rice. Field Crops Res 55:129–139

    Article  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochem Biophys Acta 1819:86–96

    CAS  PubMed  Google Scholar 

  • Moons A, Keyser AD, Montagu MV (1997) A group 3 LEA cDNA of rice, responsive to abscisic acid, but not to jasmonic acid, shows variety-specific differences in salt stress response. Gene 191:197–204

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee K, Choudhury AR, Gupta B, Gupta S, Sengupta DN (2006) An ABRE-binding factor, OSBZ8, is highly expressed in salt tolerant cultivars than in salt sensitive cultivars of indica rice. BMC Plant Biol 6:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakashima K, Tran LS, Nguyen DV, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Jan A, Todaka D, Maruyama K, Goto S, Shinozaki K, Yamaguchi-Shinozaki K (2014) Comparative functional analysis of six drought-responsive promoters in transgenic rice. Planta 239:47–60

    Article  CAS  PubMed  Google Scholar 

  • Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137–148

    Article  CAS  PubMed  Google Scholar 

  • Padmalatha KV, Dhandapani G, Kanakachari M, Kumar S, Dass A, Patil DP, Rajamani V, Kumar K, Pathak R, Rawat B, Leelavathi S, Reddy PS, Jain N, Powar KN, Hiremath V, Katageri IS, Reddy MK, Solanke AU, Reddy VS, Kumar PA (2012) Genome-wide transcriptomic analysis of cotton under drought stress reveal significant down-regulation of genes and pathways involved in fibre elongation and up-regulation of defence responsive genes. Plant Mol Biol 78:223–246

    Article  CAS  PubMed  Google Scholar 

  • Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 52:1569–1582

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (2000) Molecular cloning: A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Sharma SD, Tripathy S, Biswal J (2000) Origin of O. sativa and its ecotypes. In: Nanda JS (ed) Rice breeding and genetics: research priorities and challenges. Science Publications, Enfield, pp. 349–369

    Google Scholar 

  • Shobbar ZS, Oane R, Gamuyao R, Palma JD, Malboobi MA, Karimzadeh G, Javaran MJ, Bennett J (2008) Abscisic acid regulates gene expression in cortical fiber cells and silica cells of rice shoots. New Phytol 178:68–79

    Article  CAS  PubMed  Google Scholar 

  • Sievers F, Wilm A, Dineen DG, Gibson TJ, Karplus K, Li W, Lopez R, McWilliamH RM, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh BP, Jayaswal PK, Singh B, Singh PK, Kumar V, Mishra S, Singh N, Panda K, Singh NK (2015) Natural allelic diversity in OsDREB1F gene in the Indian wild rice germplasm led to ascertain its association with drought tolerance. Plant Cell Rep 34:993–1004

    Article  CAS  PubMed  Google Scholar 

  • Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho THD, Qu R (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1–9

    Article  CAS  PubMed  Google Scholar 

  • Song Z, Zhu W, Rong J, Xu X, Chen J, Lu BR (2006) Evidence of introgression from cultivated rice Oryza rufipogon (Poaceae) populations based on SSR fingerprinting: implications for wild rice differentiation and conservation. Evol Ecol 20:501–522

    Article  Google Scholar 

  • Sreenivasulu N, Sopory SK, Kavi Kishor PB (2007) Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388:1–13

    Article  CAS  PubMed  Google Scholar 

  • Takahashi R, Joshee N, Kitagawa Y (1994) Induction of chilling resistance by water stress, and cDNA sequence analysis and expression of water stress-regulated genes in rice. Plant Mol Biol 26:339–352

    Article  CAS  PubMed  Google Scholar 

  • Tang N, Zhang H, Li X, Xiao J, Xiong L (2012) Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. Plant Physiol 158:1755–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115:35–46

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho THD, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Transcriptional networks in plants: Organization of cis-acting regulatory elements in osmotic- and cold-stress responsive promoters. Trends Plant Sci 3:88–94

    Article  Google Scholar 

  • Yi N, Kim YS, M-H J, Oh S-J, Jeong JS, Park S-H, Choi YD, Kim J-K (2010) Functional analysis of six drought-inducible promoters in transgenic rice plants throughout all stages of plant growth. Planta 232:743–754

    Article  CAS  PubMed  Google Scholar 

  • Yi N, Oh SJ, Kim YS, Jang HJ, Park SH, Jeong JS, Song SI, Choi YD, Kim JK (2011) Analysis of the Wsi18, a stress-inducible promoter that is active in the whole grain of transgenic rice. Transgenic Res 20:153–163

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q (2007) Strategies for developing green super rice. Proc Natl Acad Sci U S A 104:16402–16409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Financial assistance from National Agricultural Innovation Project, Indian Council of Agricultural Research (NAIP/ICAR) in terms of grant support to laboratory and fellowship to RK are thankfully acknowledged. The authors extend their sincere gratitude to two anonymous reviewers whose incisive comments have helped to improve the clarity of the manuscript.

Author contribution statement

SKS conceived the research. SKS, RK and AC designed the research. RK, AC, RKB and JB performed the experiments. SKS, AKG, RK and AC analyzed the data. AKG and AB provided valuable scientific inputs during the course of the study. RK and AC wrote the manuscript in consultation with AKG and SKS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananta Kumar Ghosh.

Ethics declarations

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Electronic supplementary material

Online Resource 1

(PDF 128 kb)

Online Resource 2

(PDF 124 kb)

Online Resource 3

(PDF 208 kb)

Online Resource 4

(PDF 248 kb)

Online Resource 5

(PDF 161 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, R., Chakraborty, A., Bhunia, R.K. et al. Wsi18 promoter from wild rice genotype, Oryza nivara, shows enhanced expression under soil water stress in contrast to elite cultivar, IR20 . J. Plant Biochem. Biotechnol. 26, 14–26 (2017). https://doi.org/10.1007/s13562-016-0355-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-016-0355-9

Keywords

Navigation