Skip to main content
Log in

Toxicity assessment of Diclofenac and its biodegradation metabolites toward mice

  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Biodegradation of the anti-inflammatory drug Diclofenac (DCF) was studied using Enterobacter cloacae (D16) isolated from household compost. This isolate was able to eliminate 67.57% of DCF as sole carbon source after 48 h of incubation. Parallel to its disappearance, five metabolites were observed in microbial active samples which were suspected to be the DCF metabolites. GCMS showed a very similar spectrum of these metabolites with the MS spectrum of the parent compound. DCF Toxicity at different concentrations (toxic dose, therapeutic dose, and low dose) and its metabolites toxicity toward mice liver cells were evaluated. At toxic and therapeutic doses DCF had a negative effect on the oxidative stress parameters represented by a decrease in Reduced Glutathione reserve, lipid peroxidation and a disturbance of the liver detoxification enzymes (superoxide dismutase, Catalase, and glutathione S-transferase). In contrast, no effect was observed after treatment of animals with low dose and DCF biotransformation products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tran, N. H., Urase, T., Ngo, H. H., Hu, J. & Ong, S. L. Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants. Bioresour. Technol. 146, 721–731 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Kosjek, T., Heath, E. & Kompare, B. Removal of pharmaceutical residues in a pilot wastewater treatment plant. Anal. Bioanal. Chem. 387, 1379–1387 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Schmitt-Jansen, M., Bartels, P., Adler, N. & Altenburger, R. Phytotoxicity assessment of diclofenac and its phototransformation products. Anal. Bioanal. Chem. 387, 1389–1396 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. González-Mariño, I., Quintana, J. B., Rodríguez, I. & Cela, R. Determination of drugs of abuse in water by solid-phase extraction, derivatisation and gas chromatography-ion trap-tandem mass spectrometry. J. Chromatogr. A 1217, 1748–1760 (2010).

    Article  PubMed  Google Scholar 

  5. Marco-Urrea, E., Pérez-Trujillo, M., Cruz-Morató, C., Caminal, G. & Vicent, T. Degradation of the drug sodium diclofenac by Trametes versicolor pellets and identification of some intermediates by NMR. J. Hazard. Mater. 176, 836–842 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Forrez, I., Boon, N., Verstraete, W. & Carballa, M. in Comprehensive biotechnology (Elsevier, Netherlands, 2011).

    Google Scholar 

  7. Quinn, B., Schmidt, W., O’Rourke, K. & Hernan, R. Effects of the pharmaceuticals gemfibrozil and diclofenac on biomarker expression in the zebra mussel (Dreissena polymorpha) and their comparison with standardised toxicity tests. Chemosphere 84, 657–663 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Tran, N. H., Urase, T. & Kusakabe, O. The characteristics of enriched nitrifier culture in the degradation of selected pharmaceutically active compounds. J. Hazard. Mater. 171, 1051–1057 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Almeida, B. et al. Modelling the biodegradation of non-steroidal anti-inflammatory drugs (NSAIDs) by activated sludge and a pure culture. Bioresour. Technol. 133, 31–37 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Felis, E. & Miksch, K. Removal of analgesic drugs from the aquatic environment using photochemical methods. Water Sci. Technol. 60, 2253–2259 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Jim, T. Y., Bouwer, E. J. & Coelhan, M. Occurrence and biodegradability studies of selected pharmaceuticals and personal care products in sewage effluent. Agr. Water Manage 86, 72–80 (2006).

    Article  Google Scholar 

  12. Evangelista, S., Cooper, D. & Yargeau, V. The effect of structure and a secondary carbon source on the microbial degradation of chlorophenoxy acids. Chemosphere 79, 1084–1088 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Caracciolo, A. B., Topp, E. & Grenni, P. Pharmaceuticals in the environment: biodegradation and effects on natural microbial communities. A review. J. Pharm. Biomed. Anal. 106, 25–36 (2015).

    Article  Google Scholar 

  14. Nikolaou, A., Meric, S. & Fatta, D. Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal. Bioanal. Chem. 387, 1225–1234 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Hickey, E., Raje, R., Reid, V., Gross, S. & Ray, S. Diclofenac induced in vivo nephrotoxicity may involve oxidative stress-mediated massive genomic DNA fragmentation and apoptotic cell death. Free Radic. Biol. Med. 31, 139–152 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Aouacheri, W., Saka, S., Djafer, R. & Lefranc, G. Protective effect of diclofenac towards the oxidative stress induced by paracetamol toxicity in rats. Ann. Biol. Clin. (Paris) 67, 619–627 (2009).

    CAS  Google Scholar 

  17. Wided, K., Hassiba, R. & Mesbah, L. Polyphenolic fraction of Algerian propolis reverses doxorubicin induced oxidative stress in liver cells and mitochondria. Pak. J. Pharm. Sci. 27, 1891–1897 (2014).

    PubMed  Google Scholar 

  18. Baravalia, Y., Vaghasiya, Y. & Chanda, S. Hepatoprotective effect of Woodfordia fruticosa Kurz flowers on diclofenac sodium induced liver toxicity in rats. Asian Pac. J. Trop Med. 4, 342–346 (2011).

    Article  PubMed  Google Scholar 

  19. Boelsterli, U. A. Diclofenac-induced liver injury: a paradigm of idiosyncratic drug toxicity. Toxicol. Appl. Pharmacol. 192, 307–322 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Tkachenko, H., Kurhaluk, N., Grudniewska, J. & Andriichuk, A. Tissue-specific responses of oxidative stress biomarkers and antioxidant defenses in rainbow trout Oncorhynchus mykiss during a vaccination against furunculosis. Fish Physiol. Biochem. 40, 1289–1300 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Khan, M. I. & Khan, M. R. Gastroprotective potential of Dalbergia sissoo roxb. stem bark against diclofenacinduced gastric damage in rats. Osong. Public. Health Res. Perspect. 4, 271–277 (2013).

    Article  PubMed  Google Scholar 

  22. Sokol, R. J. et al. Role of oxidant stress in the permeability transition induced in rat hepatic mitochondria by hydrophobic bile acids. Pediatr. Res. 49, 519–531 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Gómez-Lechón, M. J. et al. Diclofenac induces apoptosis in hepatocytes by alteration of mitochondrial function and generation of ROS. Biochem. Pharmacol. 66, 2155–2167 (2003).

    Article  PubMed  Google Scholar 

  24. Cruz-Morató, C. et al. Continuous treatment of clofibric acid by Trametes versicolor in a fluidized bed bioreactor: Identification of transformation products and toxicity assessment. Biochem. Eng. J. 75, 79–85 (2013).

    Article  Google Scholar 

  25. OECD (Organization of Economic Cooperation and Development). Guideline for Testing Chemicals -Ready Biodegradability, http://www.oecd.org/ (1992).

  26. Aissaoui, S., Ouled-Haddar, H., Sifour, M., Harrouche, K. & Sghaier, H. Metabolic and Co-Metabolic Transformation of Diclofenac by Enterobacter hormaechei D15 Isolated from Activated Sludge. Curr. Microbiol. 74, 381–388 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Koutsouba, V. et al. Determination of polar pharmaceuticals in sewage water of Greece by gas chromatography-mass spectrometry. Chemosphere 51, 69–75 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Zwiener, C. & Frimmel, F. Short-term tests with a pilot sewage plant and biofilm reactors for the biological degradation of the pharmaceutical compounds clofibric acid, ibuprofen, and diclofenac. Sci. Total Environ. 309, 201–211 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Beauchamp, C. & Fridovich, I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276–287 (1971).

    Article  CAS  PubMed  Google Scholar 

  30. Clairbone, A. Catalase activity, in CRC Handbook of Methods in Oxygen Radical Research (eds Greenwald R. A.) 283-284 (CRC Press, U.S.A., 1985).

  31. Habig, W. H., Pabst, M. J. & Jakoby, W. B. Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130–7139 (1974).

    CAS  PubMed  Google Scholar 

  32. Ellman, G. L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82, 70–77 (1959).

    Article  CAS  PubMed  Google Scholar 

  33. Ohkawa, H., Ohishi, N. & Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351–358 (1979).

    Article  CAS  PubMed  Google Scholar 

  34. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salima Aissaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aissaoui, S., Sifour, M., Ouled-Haddar, H. et al. Toxicity assessment of Diclofenac and its biodegradation metabolites toward mice. Toxicol. Environ. Health Sci. 9, 284–290 (2017). https://doi.org/10.1007/s13530-017-0333-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-017-0333-1

Keywords

Navigation