Skip to main content

Advertisement

Log in

Gold-decorated sulfur-doped carbon nanotubes as electrocatalyst in hydrogen evolution reaction

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

In the present work, sulfur-doped carbon nanotubes (SCNTs) have been prepared using chemical vapor deposition method and various cobalt-containing catalysts. In this line, simple and silica-supported cobalt nanoparticles (Co and Co/SiO2) and 5 cobalt spinels (MCo2O4, M = Ni, Cu, Mn, Fe, Cr, and Mg) were used as the growth catalysts and four different temperatures (600, 650, 700, and 750 °C) were used to obtain the optimized condition for the preparation of SCNTs. Among the employed catalysts, Co/SiO2 at 600 °C showed the higher abilities for the preparation of desired SCNTs. All products were characterized using FESEM, EDS, XRD, Raman, static contact angle, TGA, and DTA analyzes. The electrochemical behaviors of the two best products (SCNTs-Co/SiO2 and SCNTs-Co) in hydrogen evolution reaction (HER) were examined, which confirmed the higher ability of SCNTs-Co/SiO2. This best product was decorated with 2, 5, and 10% of gold nanoparticles to examine the effect of gold decoration of the properties and electrochemical abilities of the product. All decorated products exposure the higher electrochemical potencies versus the simple SCNTs and among the decorated products, 10% Au-SCNT was the most appropriate product for this purpose with small differences with the other ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jang JU, Cha JE, Lee SH, Kim J, Yang B, Kim SY, Kim SH (2019) Enhanced electrical and electromagnetic interference shielding properties of uniformly dispersed carbon natubes filled composite films via solvent-free process using ring-opening polymerization of cyclic butylene terephthalate. Polymer, 122030

  2. Hung NT, Nugraha AR, Saito R (2019) Thermoelectric properties of carbon nanotubes. Energies 12(23):4561

    Article  CAS  Google Scholar 

  3. Dai K, Hu T, Zhang J, Lu L (2019) Carbon nanotube exfoliated porous reduced graphene oxide/CdS-diethylenetriamine heterojunction for efficient photocatalytic H2 production. Appl Surf Sci, 144783

  4. Vijayabhaskar A, Shanmugasundaram M (2017) Usage of carbon nanotubes and nanofibers in cement and concrete: a review. Int J Eng Technol 9:564–569

    Article  CAS  Google Scholar 

  5. Scarselli M et al (2015) Alications of three-dimensional carbon nanotube networks. Beilstein J Nanotechnol 6:792–798

    Article  CAS  Google Scholar 

  6. Thines RK, Mubarak NM, Nizamuddin S, Sahu JN, Abdullah EC, Ganesan P (2017) Application potential of carbon nanomaterials in water and wastewater treatment: a review. J Taiwan Inst Chem Eng 72:116–133

    Article  CAS  Google Scholar 

  7. Brady-Estévez AS, Nguyen TH, Gutierrez L, Elimelech M (2010) Impact of solution chemistry on viral removal by a single-walled carbon nanotube filter. Water Res 44:3773–3780

    Article  CAS  Google Scholar 

  8. Hashim DP et al (2012) Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions. Sci Rep 2:1–8

    Article  CAS  Google Scholar 

  9. Licht S, Douglas A, Ren J, Carter R, Lefler M, Pint CL (2016) Carbon nanotubes produced from ambient carbon dioxide for environmentally sustainable lithium-ion and sodium-ion battery anodes. ACS Cent Sci 2:162–168

    Article  CAS  Google Scholar 

  10. Alimohammadi F, Gashti MP, Shamei A (2012) A novel method for coating of carbon nanotube on cellulose fiber using 1,2,3,4-butanetetracarboxylic acid as a cross-linking agent. Prog Org Coat 74:470–478

    Article  CAS  Google Scholar 

  11. Alimohammadi F, Parvinzadeh Gashti M, Shamei A (2013) Functional cellulose fibers via polycarboxylic acid/carbon nanotube composite coating. J Coat Technol Res 10:123–132

    Article  CAS  Google Scholar 

  12. Coleman JN, Khan U, Blau WJ, Gun’ko YK (1624–1652) Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44:2006

    Google Scholar 

  13. Chen P, Kim HS, Kwon SM, Yun YS, Jin HJ (2009) Regenerated bacterial cellulose/multi-walled carbon nanotubes composite fibers prepared by wet-spinning. Curr Appl Phys 9:96–99

    Article  Google Scholar 

  14. Gabor NM, Zhong Z, Bosnick K, Park J, McEuen PL (2009) Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes. Science 5946:1367–1371

    Article  CAS  Google Scholar 

  15. Benthall J (2012) Believing in belonging: belief and social identity in the modern world. By Abby Day. J R Anthropol Inst 18:495–496

    Article  Google Scholar 

  16. Li WS, Chang ML, Cheng HC (2019) Facile synthesis of CNTs/Co (OH) 2 hybrid nastructures for high-performance electrochemical supercapacitor. Chem Phys Lett, 137003

  17. Lee JM, Park JS, Lee SH, Kim H, Yoo S, Kim SO (2011) Selective electron- or hole-transport enhancement in bulk-heterojunction organic solar cells with N- or B-doped carbon nanotubes. Adv Mater 23:629–633

    Article  CAS  Google Scholar 

  18. Sakamoto JS, Dunn B (2002) Vanadium oxide-carbon nanotube composite electrodes for use in secondary lithium batteries. J Electrochem Soc 149:A26

    Article  CAS  Google Scholar 

  19. Veedu VP, Cao A, Li X, Ma K, Soldano C, Kar S, Ajayan PM, Ghasemi-Nejhad MN (2006) Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nat Mater 5:457–462

    Article  CAS  Google Scholar 

  20. Le Goff A et al (2009) From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Science 5958:1384–1387

    Article  CAS  Google Scholar 

  21. Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679

    Article  CAS  Google Scholar 

  22. Kam NWS, Jessop TC, Wender PA, Dai H (2004) Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 126:6850–6851

    Article  CAS  Google Scholar 

  23. Cai D, Mataraza JM, Qin ZH, Huang Z, Huang J, Chiles TC, Carnahan D, Kempa K, Ren Z (2005) Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Methods 2:449–454

    Article  CAS  Google Scholar 

  24. Huang H, Yu Y, Zhang M (2019) Analysis of adsorption properties of SF6 decomposed gases (SOF2, SO2F2, SF4, CF4, and HF on Fe-doped SWCNT: a DFT study. Appl Surf Sci, 144622

  25. Terrava ML, Sessa V, Rossi M (2006) The world of carbon nanotubes: an overview of CVD growth methodologies. Chem Vap Depos 12:315–325

    Article  CAS  Google Scholar 

  26. José-Yacamán M, Miki-Yoshida M, Rendón L, Santiesteban JG (1993) Catalytic growth of carbon microtubules with fullerene structure. Appl Phys Lett 62:202–204

    Article  Google Scholar 

  27. Chiang M-R, Liu K-S, Lai T-S, Tsai C-H, Cheng H-F, Lin I-N (2001) Electron field emission properties of pulsed laser deposited carbon films containing carbon nanotubes. J Vac Sci Technol B 19:1034

    Article  CAS  Google Scholar 

  28. Ajayan PM (1787–1800) Natubes from carbon. Chem Rev 99:1999

    Google Scholar 

  29. Choi E, Gao Y, Cui Y, Pyo SG (2019) Effects of Ti-based interposer layer on graphene/carbon nanotube nano-contact resistance. Appl Surf Sci, 144881

  30. Chen J et al (1998) Solution properties of single-walled carbon nanotubes. Science 5386:95–98

    Article  Google Scholar 

  31. Yang Q, Xu W, Tomita A, Kyotani T (2005) Double coaxial structure and dual physicochemical properties of carbon nanotubes composed of stacked nitrogen-doped and undoped multiwalls. Chem Mater 17:2940–2945

    Article  CAS  Google Scholar 

  32. Nxumalo EN, Coville NJ (2010) Nitrogen doped carbon nanotubes from orgametallic compounds: a review. Materials (Basel) 3:2141–2171

    Article  CAS  Google Scholar 

  33. Hamadanian M, Khoshnevisan B, Fotooh FK (2011) Density functional study of super cell N-doped (10,0) zigzag single-walled carbon nanotubes as CO sensor. Struct Chem 22:1205–1211

    Article  CAS  Google Scholar 

  34. Zhang X, Gong X (2015) Theoretical investigation of rare gas adsorption on and inside B-doped carbon nanotubes by DFT, QTAIM and NBO. RSC Adv 5:65604–65612

    Article  CAS  Google Scholar 

  35. Hassani F, Tavakol H, Keshavarzipour F, Javaheri A (2016) A simple synthesis of sulfur-doped graphene using sulfur powder by chemical vapor deposition. RSC Adv 6:27158–27163

    Article  CAS  Google Scholar 

  36. Maukian M, Tavakol H, Fashandi H (2018) Synthesis of highly uniform sulfur-doped carbon sphere using CVD method and its application for cationic dye removal in comparison with undoped product. J Environ Chem Eng 6:6904–6915

    Article  CAS  Google Scholar 

  37. Bakhshi P, Tavakol H (2019) Synthesis of Si-doped CNT and its catalytic ability in hydrogen evolution reaction, 1–7

  38. Masatake H (2004) Gold as a novel catalyst in the 21st century: preparation, working mechanism and applications. Gold Bull 37:27–36

    Article  Google Scholar 

  39. Geoffrey B, Thompson DT (2000) Gold-catalysed oxidation of carbon monoxide. Gold Bull 33:41–50

    Article  Google Scholar 

  40. Hashmi ASK (2003) Homogeneous gold catalysts and alkynes: a successful liaison. Gold Bull 36:3–9

    Article  CAS  Google Scholar 

  41. Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45:7896–7936

    Article  Google Scholar 

  42. Zheng Y, Jiao Y, Vasileff A, Qiao SZ (2018) The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angew Chem Int Ed 57:7568–7579

    Article  CAS  Google Scholar 

  43. Zhou W et al (2016) Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy 28:29–43

    Article  CAS  Google Scholar 

  44. Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569

    Article  CAS  Google Scholar 

  45. Bhavani P, Reddy NR, Reddy IVS (2017) Synthesis and physical characterization of γ-Fe2O3 and (α+γ)-Fe2O3 nanoparticles. J Korean Phys Soc 70:150–154

    Article  CAS  Google Scholar 

  46. Martin MN, Basham JI, Chando P, Eah S (2010) Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly, 26, 7410–7417

  47. Yagi T, Marumo F, Akimoto SI (1974) Crystal structures of spinel polymorphs of Fe2SiO4 and Ni2SiO4. Am Mineral 59:486–490

    CAS  Google Scholar 

  48. Saib AM, Borgna A, van de Loosdrecht J, van Berge PJ, Geus JW, Niemantsverdriet JW (2006) Preparation and characterisation of spherical Co/SiO2model catalysts with well-defined nano-sized cobalt crystallites and a comparison of their stability against oxidation with water. J Catal 239:326–339

    Article  CAS  Google Scholar 

  49. Uosaki K, Shen Y, Kondo T (2000) Preparation of a highly ordered Au (111) phase on a polycrystalline gold substrate by vacuum deposition and its characterization by XRD, GISXRD, STWAFM, and electrochemical measurements, 111, 14117–14122

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Tavakol.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavakol, H., Zhiani, M. & Shareifyan-ghahfarokhi, F. Gold-decorated sulfur-doped carbon nanotubes as electrocatalyst in hydrogen evolution reaction. Gold Bull 53, 63–76 (2020). https://doi.org/10.1007/s13404-020-00275-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-020-00275-0

Keywords

Navigation