Skip to main content

Advertisement

Log in

Imaging and spectroscopic techniques for microstructural and compositional analysis of lignocellulosic materials: a review

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Selection and characterization of biomass feedstocks with the maximum biomaterial or biofuel yields need the accessibility of reliable and efficient methods for structural and compositional characterization of plant material. Understanding microstructure of lignocellulosic fibre is required to evaluate the heat and mass transfer phenomena, bond formation, fibre alignment and orientation, structural architecture and modelling of structure-property relationship, which are necessary for designing and developing cellulose-based products. Furthermore, the microstructural and compositional information can determine distribution of lignin, hemicellulose and cellulose in the biomass, interaction of reinforced fillers and polymer matrix in the bio-composites. Many conventional standard analytical methods for biomass study are laborious, slow and use harsh chemical reagents that need certain remediation. This paper reviews the microstructural and compositional analyses of lignocellulosic materials through imaging and spectroscopic techniques (I&ST) such as X-ray micro-computed tomography (X-ray μCT), scanning electron microscope (SEM), confocal laser scanning microscopy (CLSM), Fourier transform infrared (FTIR) spectroscopy and near infrared spectroscopy (NIRS). This review attempts to provide fundamental backgrounds, basic working principles, applications and technical limitations and possible solutions of I&ST for analysing lignocellulosic biomass, their products and changes acquired during processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. National Academy of Sciences NA of E and NRC (2010) Liquid transportation fuels from coal and biomass: technological status, costs, and environmental impacts. National Academies Press, Washington, DC

  2. Hawinkels RM, Beex, RHJ Peerlings, Eindhoven L (2009) A microscopic study of cellulosic fibre networks. Eindhoven University of Technology, Department of Mechanical Engineering

  3. Rolland Du Roscoat S, Bloch JF, Caulet P (2012) A method to quantify the 3D microstructure of fibrous materials containing mineral fillers using X-ray microtomography: application to paper materials. J Mater Sci 47:6517–6521. https://doi.org/10.1007/s10853-012-6575-z

    Article  Google Scholar 

  4. Singh SS, Lim L-T, Manickavasagan A (2020) Ultrasound-assisted alkali-urea pre-treatment of Miscanthus × giganteus for enhanced extraction of cellulose fiber. Carbohydr Polym 247:116758. https://doi.org/10.1016/j.carbpol.2020.116758

    Article  Google Scholar 

  5. Marulier C, Dumont PJJ, Orgéas L, Caillerie D, du Roscoat SR (2012) Towards 3D analysis of pulp fibre networks at the fibre and bond levels. Nordic Pulp Paper Res J 27:245–255. https://doi.org/10.3183/NPPRJ-2012-27-02-p245-255

    Article  Google Scholar 

  6. Viguié J, Latil P, Orgéas L, Dumont PJJ, Rolland du Roscoat S, Bloch JF, Marulier C, Guiraud O (2013) Finding fibres and their contacts within 3D images of disordered fibrous media. Compos Sci Technol 89:202–210. https://doi.org/10.1016/j.compscitech.2013.09.023

    Article  Google Scholar 

  7. Chinga-Carrasco G (2009) Exploring the multi-scale structure of printing paper - a review of modern technology. J Microsc 234:211–242. https://doi.org/10.1111/j.1365-2818.2009.03164.x

    Article  MathSciNet  Google Scholar 

  8. Ghodki BM, Singh SS, Chakraborty S, Jana S, Ghodki DM, Goswami TK (2019) Influence of cryogenic treatment on micro-structural characteristics of some Indian spices: X-ray micro-tomography investigation. J Food Eng 243:39–48. https://doi.org/10.1016/j.jfoodeng.2018.08.033

    Article  Google Scholar 

  9. Azeh Y, Olatunji GA (2012) Mamza PA (2012) Scanning electron microscopy and kinetic studies of ketene-acetylated wood/cellulose high-density polyethylene blends. Int J Carbohydr Chem 2012:1–7. https://doi.org/10.1155/2012/456491

    Article  Google Scholar 

  10. Hobisch MA, Bossu J, Mandlez D, Bardet SM, Spirk S, Eckhart R, Bauer W (2019) Localization of cellulosic fines in paper via fluorescent labeling. Cellulose 26:6933–6942. https://doi.org/10.1007/s10570-019-02556-0

    Article  Google Scholar 

  11. Schopf JW, Kudryavtsev AB, Tripathi AB, Czaja AD (2010) Three-dimensional morphological (CLSM) and chemical (Raman) imagery of cellularly mineralized fossils. In: Topics in geobiology. Springer, Dordrecht, pp 457–486

  12. An IR spectral interpretation potpourri: carbohydrates and alkynes | spectroscopy. http://www.spectroscopyonline.com/ir-spectral-interpretation-potpourri-carbohydrates-and-alkynes. Accessed 19 Jul 2020

  13. Amir RM, Anjum FM, Khan MI, Khan MR, Pasha I, Nadeem M (2013) Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat varieties. J Food Sci Technol 50:1018–1023. https://doi.org/10.1007/s13197-011-0424-y

    Article  Google Scholar 

  14. Pasquini C (2003) Near infrared spectroscopy: fundamentals, practical aspects and analytical applications. J Braz Chem Soc 14:198–219

    Article  Google Scholar 

  15. Zhang H, Song S, Lang Q et al (2012) Rapid predictive models for minimally destructive kappa number and pulp yield of Acacia spp. With near infrared reflectance (NIR) spectroscopy. BioResources 7:616–623

    Google Scholar 

  16. Blanco M, Peinado AC, Mas J (2004) Analytical monitoring of alcoholic fermentation using NIR spectroscopy. Biotechnol Bioeng 88:536–542. https://doi.org/10.1002/bit.20214

    Article  Google Scholar 

  17. Mathiassen JR, Misimi E, Bondø M, Veliyulin E, Østvik SO (2011) Trends in application of imaging technologies to inspection of fish and fish products. Trends Food Sci Technol 22:257–275

    Article  Google Scholar 

  18. Adams RD, Bacon DGC (1973) Effect of fibre orientation and laminate geometry on the dynamic properties of CFRP. J Compos Mater 7:402–428. https://doi.org/10.1177/002199837300700401

    Article  Google Scholar 

  19. Cordin M, Bechtold T (2018) Physical properties of lyocell-reinforced polypropylene composites from intermingled fibre with varying fibre volume fractions. J Thermoplast Compos Mater 31:1029–1041. https://doi.org/10.1177/0892705717734594

    Article  Google Scholar 

  20. Zoppe JO, Peresin MS, Habibi Y, Venditti RA, Rojas OJ (2009) Reinforcing poly(ε-caprolactone) nanofibers with cellulose nanocrystals. ACS Appl Mater Interfaces 1:1996–2004. https://doi.org/10.1021/am9003705

    Article  Google Scholar 

  21. Abdennadher A, Vincent M, Budtova T (2016) Rheological properties of molten flax- and Tencel ® -polypropylene composites: influence of fiber morphology and concentration. J Rheol 60:191–201. https://doi.org/10.1122/1.4938224

    Article  Google Scholar 

  22. Schrader A, Kenik D (2015) Understanding the influence of fiber orientation on structural analysis of fiber-filled parts. Composites World 1:10–12

    Google Scholar 

  23. Zhou C, Wu Q, Yue Y, Zhang Q (2011) Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J Colloid Interface Sci 353:116–123. https://doi.org/10.1016/j.jcis.2010.09.035

    Article  Google Scholar 

  24. Seibert JA, Seibert A (2004) X-Ray imaging physics for nuclear medicine technologists. Part 1: basic principles of X-ray production. J Nucl Med Technol 32:139–147

    Google Scholar 

  25. Seibert JA, Boone JM (2005) X-ray imaging physics for nuclear medicine technologists. Part 2: X-ray interactions and image formation. J Nucl Med Technol 33:3–18

    Google Scholar 

  26. Landis EN, Keane DT (2010) X-ray microtomography. Mater Charact 61:1305–1316

    Article  Google Scholar 

  27. Baker DR, Mancini L, Polacci M et al (2012) An introduction to the application of X-ray microtomography to the three-dimensional study of igneous rocks. Lithos 148:262–276

    Article  Google Scholar 

  28. Schoeman L, Williams P, du Plessis A, Manley M (2016) X-ray micro-computed tomography (μCT) for non-destructive characterisation of food microstructure. Trends Food Sci Technol 47:10–24

    Article  Google Scholar 

  29. Verboven P, Kerckhofs G, Mebatsion HK, Ho QT, Temst K, Wevers M, Cloetens P, Nicolaï BM (2008) Three-dimensional gas exchange pathways in pome fruit characterized by synchrotron X-ray computed tomography. Plant Physiol 147:518–527. https://doi.org/10.1104/pp.108.118935

    Article  Google Scholar 

  30. Léonard A, Blacher S, Nimmol C, Devahastin S (2008) Effect of far-infrared radiation assisted drying on microstructure of banana slices: an illustrative use of X-ray microtomography in microstructural evaluation of a food product. J Food Eng 85:154–162. https://doi.org/10.1016/j.jfoodeng.2007.07.017

    Article  Google Scholar 

  31. Kotwaliwale N, Singh K, Kalne A, Jha SN, Seth N, Kar A (2014) X-ray imaging methods for internal quality evaluation of agricultural produce. J Food Sci Technol 51:1–15. https://doi.org/10.1007/s13197-011-0485-y

    Article  Google Scholar 

  32. Neethirajan S, Jayas DS, White NDG (2007) Detection of sprouted wheat kernels using soft X-ray image analysis. J Food Eng 81:509–513. https://doi.org/10.1016/j.jfoodeng.2006.11.020

    Article  Google Scholar 

  33. Diener RG, Mitchell JP, Rhoten -m. L. (1970) Using an X-ray image scan to sort bruised apples. Agric Eng 51:356–361

    Google Scholar 

  34. Finney EE, Norris KH (1978) X-ray scans for detecting hollow heart in potatoes. Am Potato J 55:95–105. https://doi.org/10.1007/BF02852096

    Article  Google Scholar 

  35. Barcelon EG, Tojo S, Watanabe K (1999) X-ray computed tomography for internal quality evaluation of peaches. J Agric Eng Res 73:323–330. https://doi.org/10.1006/jaer.1999.0409

    Article  Google Scholar 

  36. Herremans E, Verboven P, Defraeye T, Rogge S, Ho QT, Hertog MLATM, Verlinden BE, Bongaers E, Wevers M, Nicolai BM (2014) X-ray CT for quantitative food microstructure engineering: the apple case. Nucl Instrum Methods Phys Res, Sect B 324:88–94. https://doi.org/10.1016/j.nimb.2013.07.035

    Article  Google Scholar 

  37. Wernersson ELG (2014) Characterisation of wood-fibre-based materials using image analysis. PhD Thesis, Centre for Image Analysis, Uppsala

  38. Shri Ramaswamy U of M, B.V. Ramarao SU of NY (2004) 3-D Characterization of the structure of paper and paperboard and their application to optimize drying and water removal processes and end-use applications. Golden, CO

  39. Joffre T, Miettinen A, Berthold F, Gamstedt EK (2014) X-ray micro-computed tomography investigation of fibre length degradation during the processing steps of short-fibre composites. Compos Sci Technol 105:127–133. https://doi.org/10.1016/j.compscitech.2014.10.011

    Article  Google Scholar 

  40. Postek MT (1990) Low accelerating voltage SEM imaging and metrology using backscattered electrons. Rev Sci Instrum 61:3750–3754. https://doi.org/10.1063/1.1141548

    Article  Google Scholar 

  41. Pomeranz Y (1976) Scanning electron microscopy in food science and technology. Adv Food Res 22:205–307. https://doi.org/10.1016/S0065-2628(08)60340-7

    Article  Google Scholar 

  42. Nazni P, Durgadevi R, Mishra V (2014) Effect of processing on structure and morphology of amaranth starch. Undefined. J Agric Food Technol 43:1–7

    Google Scholar 

  43. Prolongo SG, Gude MR, del Rosario G, Ureña A (2010) Surface pretreatments for composite joints: study of surface profile by SEM image analysis. J Adhes Sci Technol 24:1855–1867

    Article  Google Scholar 

  44. Utrilla-Coello RG, Bello-Pérez LA, Vernon-Carter EJ, Rodriguez E, Alvarez-Ramirez J (2013) Microstructure of retrograded starch: quantification from lacunarity analysis of SEM micrographs. J Food Eng 116:775–781. https://doi.org/10.1016/j.jfoodeng.2013.01.026

    Article  Google Scholar 

  45. Arkharova NA, Suvorova EI, Severin AV et al (2016) SEM and TEM for structure and properties characterization of bacterial cellulose/hydroxyapatite composites. Scanning 38:757–765. https://doi.org/10.1002/sca.21325

    Article  Google Scholar 

  46. Xiao HW, Gao ZJ (2012) The application of scanning electron microscope (SEM) to study the microstructure changes in the field of agricultural products drying. In: Kazmiruk V (ed) Scanning electron microscopy. InTech Press, Rijeka, pp 213–226

    Google Scholar 

  47. Jeoung-Ah K (2004) The characterisation of paper composite porcelain in a fired state by XRD and SEM. J Eur Ceram Soc 24:3823–3831. https://doi.org/10.1016/j.jeurceramsoc.2004.03.002

    Article  Google Scholar 

  48. Wang Q, Xiao S, Shi SQ, Cai L (2018) Effect of light-delignification on mechanical, hydrophobic, and thermal properties of high-strength molded fiber materials. Sci Rep 8:1–10. https://doi.org/10.1038/s41598-018-19623-4

    Article  Google Scholar 

  49. Wang QQ, Zhu JY, Gleisner R, Kuster TA, Baxa U, McNeil SE (2012) Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19:1631–1643. https://doi.org/10.1007/s10570-012-9745-x

    Article  Google Scholar 

  50. Schopf JW, Kudryavtsev AB, Sergeev VN (2010) Confocal laser scanning microscopy and Raman imagery of the late Neoproterozoic Chichkan microbiota of South Kazakhstan. J Paleontol 84:402–416. https://doi.org/10.1666/09-134.1

    Article  Google Scholar 

  51. Volynets B, Dahman Y (2011) Assessment of pretreatments and enzymatic hydrolysis of wheat straw as a sugar source for bioprocess industry. Int J Energy Environ 2:427–446

    Google Scholar 

  52. Selig MJ, Adney WS, Himmel ME, Decker SR (2009) The impact of cell wall acetylation on corn stover hydrolysis by cellulolytic and xylanolytic enzymes. Cellulose 16:711–722. https://doi.org/10.1007/s10570-009-9322-0

    Article  Google Scholar 

  53. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. https://doi.org/10.1186/1754-6834-3-10

    Article  Google Scholar 

  54. Terashima N, Kitano K, Kojima M, Yoshida M, Yamamoto H, Westermark U (2009) Nanostructural assembly of cellulose, hemicellulose, and lignin in the middle layer of secondary wall of ginkgo tracheid. J Wood Sci 55:409–416. https://doi.org/10.1007/s10086-009-1049-x

    Article  Google Scholar 

  55. Grabber JH, Ralph J, Lapierre C, Barrière Y (2004) Genetic and molecular basis of grass cell-wall degradability. I. Lignin-cell wall matrix interactions. Comptes Rendus - Biol 327:455–465. https://doi.org/10.1016/j.crvi.2004.02.009

    Article  Google Scholar 

  56. Ding SY, Liu YS, Zeng Y, Himmel ME, Baker JO, Bayer EA (2012) How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338:1055–1060. https://doi.org/10.1126/science.1227491

    Article  Google Scholar 

  57. Coletta VC, Rezende CA, da Conceição FR, Polikarpov I, Guimarães FEG (2013) Mapping the lignin distribution in pretreated sugarcane bagasse by confocal and fluorescence lifetime imaging microscopy. Biotechnol Biofuels 6:1–10

    Article  Google Scholar 

  58. Kapsokalyvas D, Loos J, Boogers IA, Appeldoorn MM, Kabel MA, Van Zandvoort M (2020) Quantification of morphochemical changes during in situ enzymatic hydrolysis of individual biomass particles based on autofluorescence imaging. Biopolymers 111:e23347

    Article  Google Scholar 

  59. Fan M, Dai D, Huang B (2012) Fourier transform infrared spectroscopy for natural fibres. In: Salih SM (ed) Fourier transform - materials analysis. InTech, Rijeka, pp 45–68

    Google Scholar 

  60. Armstrong PR, Maghirang EB, Xie F, Dowell FE (2006) Comparison of dispersive and Fourier-transform NIR instruments for measuring grain and flour attributes. Appl Eng Agric 22:453–457

    Article  Google Scholar 

  61. Dowell FE, Maghirang EB, Xie F, Lookhart GL, Pierce RO, Seabourn BW, Bean SR, Wilson JD, Chung OK (2006) Predicting wheat quality characteristics and functionality using near-infrared spectroscopy. Cereal Chem 83:529–536. https://doi.org/10.1094/CC-83-0529

    Article  Google Scholar 

  62. Himmelsbach DS, Khalili S, Akin DE (1998) FT-IR microspectroscopic imaging of flax (Linum usitatissimum L.) stems. Cell Mol Biol 44:99–108

    Google Scholar 

  63. Chatjigakis AK, Pappas C, Proxenia N et al (1998) FT-IR spectroscopic determination of the degree of esterification of cell wall pectins from stored peaches and correlation to textural changes. Carbohydr Polym 37:395–408. https://doi.org/10.1016/S0144-8617(98)00057-5

    Article  Google Scholar 

  64. Szymanska-Chargot M, Chylinska M, Kruk B, Zdunek A (2015) Combining FT-IR spectroscopy and multivariate analysis for qualitative and quantitative analysis of the cell wall composition changes during apples development. Carbohydr Polym 115:93–103. https://doi.org/10.1016/j.carbpol.2014.08.039

    Article  Google Scholar 

  65. Duarte IF, Barros A, Delgadillo I, Almeida C, Gil AM (2002) Application of FTIR spectroscopy for the quantification of sugars in mango juice as a function of ripening. J Agric Food Chem 50:3104–3111. https://doi.org/10.1021/jf011575y

    Article  Google Scholar 

  66. Li X, Wei Y, Xu J, Xu N, He Y (2018) Quantitative visualization of lignocellulose components in transverse sections of moso bamboo based on FTIR macro- and micro-spectroscopy coupled with chemometrics. Biotechnol Biofuels 11:263. https://doi.org/10.1186/s13068-018-1251-4

    Article  Google Scholar 

  67. Xu F, Yu J, Tesso T, Dowell F, Wang D (2013) Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl Energy 104:801–809

    Article  Google Scholar 

  68. Hospodarova V, Singovszka E, Stevulova N (2018) Characterization of cellulosic fibers by FTIR spectroscopy for their further implementation to building materials. Am J Anal Chem 09:303–310. https://doi.org/10.4236/ajac.2018.96023

    Article  Google Scholar 

  69. Daffalla SB, Mukhtar H, Shaharun MS (2010) Characterization of adsorbent developed from rice husk: effect of surface functional group on phenol adsorption. J Appl Sci 10:1060–1067. https://doi.org/10.3923/jas.2010.1060.1067

    Article  Google Scholar 

  70. Poletto M, Zattera AJ, Santana RMC (2012) Structural differences between wood species: evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. J Appl Polym Sci 126:E337–E344. https://doi.org/10.1002/app.36991

    Article  Google Scholar 

  71. Shi J, Xing D, Li J (2012) FTIR studies of the changes in wood chemistry from wood forming tissue under inclined treatment. Energy Procedia 16:758–762

    Article  Google Scholar 

  72. Carballo-Meilan A, Goodman AM, Baron MG, Gonzalez-Rodriguez J (2014) A specific case in the classification of woods by FTIR and chemometric: discrimination of Fagales from Malpighiales. Cellulose 21:261–273. https://doi.org/10.1007/s10570-013-0093-2

    Article  Google Scholar 

  73. Garside P, Wyeth P (2004) Identification of cellulosic fibres by FTIR spectroscopy: thread and single fibre analysis by attenuated total reflectance. Stud Conserv 48:269–275. https://doi.org/10.1179/sic.2003.48.4.269

    Article  Google Scholar 

  74. Koca N, Kocaoglu-Vurma NA, Harper WJ, Rodriguez-Saona LE (2010) Application of temperature-controlled attenuated total reflectance-mid-infrared (ATR-MIR) spectroscopy for rapid estimation of butter adulteration. Food Chem 121:778–782. https://doi.org/10.1016/j.foodchem.2009.12.083

    Article  Google Scholar 

  75. Mészáros E, Jakab E, Várhegyi G (2007) TG/MS, Py-GC/MS and THM-GC/MS study of the composition and thermal behavior of extractive components of Robinia pseudoacacia. J Anal Appl Pyrolysis 79:61–70. https://doi.org/10.1016/j.jaap.2006.12.007

    Article  Google Scholar 

  76. Martín JA, Solla A, Coimbra MA, Gil L (2005) Metabolic distinction of Ulmus minor xylem tissues after inoculation with Ophiostoma novo-ulmi. Phytochemistry 66:2458–2467. https://doi.org/10.1016/j.phytochem.2005.08.004

    Article  Google Scholar 

  77. Persson J, Chanzy H, Sugiyama J (1991) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24:2461–2466. https://doi.org/10.1021/ma00009a050

    Article  Google Scholar 

  78. Kondo T (1997) The assignment of IR absorption bands due to free hydroxyl groups in cellulose. Cellulose 4:281–292. https://doi.org/10.1023/A:1018448109214

    Article  Google Scholar 

  79. Popescu MC, Popescu CM, Lisa G, Sakata Y (2011) Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods. J Mol Struct 988:65–72. https://doi.org/10.1016/j.molstruc.2010.12.004

    Article  Google Scholar 

  80. Ishida Y, Goto K, Yokoi H, Tsuge S, Ohtani H, Sonoda T, Ona T (2007) Direct analysis of phenolic extractives in wood by thermochemolysis-gas chromatography in the presence of tetrabutylammonium hydroxide. J Anal Appl Pyrolysis 78:200–206. https://doi.org/10.1016/j.jaap.2006.06.009

    Article  Google Scholar 

  81. Struszczyk H (1986) Modification of Lignins. 111. Reaction of lignosulfonates with chlorophosphazenes. J Macromolec Sci A - Chem 23:973–992. https://doi.org/10.1080/00222338608081105

    Article  Google Scholar 

  82. Owen NL, Thomas DW (1989) Infrared studies of “hard” and “soft” woods. Appl Spectrosc 43:451–455. https://doi.org/10.1366/0003702894202760

    Article  Google Scholar 

  83. Lionetto F, del Sole R, Cannoletta D, Vasapollo G, Maffezzoli A (2012) Monitoring wood degradation during weathering by cellulose crystallinity. Materials 5:1910–1922. https://doi.org/10.3390/ma5101910

    Article  Google Scholar 

  84. Oh SY, Dong IY, Shin Y et al (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391. https://doi.org/10.1016/j.carres.2005.08.007

    Article  Google Scholar 

  85. Popescu CM, Popescu MC, Vasile C (2010) Structural changes in biodegraded lime wood. Carbohydr Polym 79:362–372. https://doi.org/10.1016/j.carbpol.2009.08.015

    Article  Google Scholar 

  86. Kondo T (1994) Hydrogen bonds in regioselectively substituted cellulose derivatives. J Polym Sci B Polym Phys 32:1229–1236. https://doi.org/10.1002/polb.1994.090320710

    Article  Google Scholar 

  87. Kondo T (1997) The relationship between intramolecular hydrogen bonds and certain physical properties of regioselectively substituted cellulose derivatives. J Polym Sci B Polym Phys 35:717–723. https://doi.org/10.1002/(SICI)1099-0488(199703)35:4<717::AID-POLB18>3.0.CO;2-J

    Article  Google Scholar 

  88. Luck S, Liebold S, Quantz M, Hoffmann M (2010) Implementation of near infrared spectroscopy for quality assurance in yeast production. In 23rd VH Yeast Conference, Vienna

  89. Sluiter JB, Ruiz RO, Scarlata CJ, Sluiter AD, Templeton DW (2010) Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J Agric Food Chem 58:9043–9053. https://doi.org/10.1021/jf1008023

    Article  Google Scholar 

  90. Smith-Moritz AM, Chern M, Lao J, Sze-To W, Heazlewood JL, Ronald PC, Vega-Sánchez ME (2011) Combining multivariate analysis and monosaccharide composition modeling to identify plant cell wall variations by Fourier Transform Near Infrared spectroscopy. Plant Methods 7. https://doi.org/10.1186/1746-4811-7-26

  91. Karlinasari L, Sabed M, Wistara INJ, Purwanto YA (2014) Near infrared (NIR) spectroscopy for estimating the chemical composition of (Acacia mangium Willd.) wood. J Indian Acad Wood Sci 11:162–167. https://doi.org/10.1007/s13196-014-0133-z

    Article  Google Scholar 

  92. Çetinkol ÖP, Smith-Moritz AM, Cheng G, Lao J, George A, Hong K, Henry R, Simmons BA, Heazlewood JL, Holmes BM (2012) Structural and chemical characterization of hardwood from tree species with applications as bioenergy feedstocks. PLoS ONE 7:e52820. https://doi.org/10.1371/journal.pone.0052820

    Article  Google Scholar 

  93. Stackpole DJ, Vaillancourt RE, Alves A, Rodrigues J, Potts BM (2011) Genetic variation in the chemical components of eucalyptus globulus wood. G3: Genes. Genomes, Genet 1:151–159. https://doi.org/10.1534/g3.111.000372

    Article  Google Scholar 

  94. Hames BR, Thomas SR, Sluiter AD, Roth CJ, Templeton DW (2003) Rapid biomass analysis-new tools for compositional analysis of corn stover feedstocks and process intermediates from ethanol production. Appl Biochem Biotechnol 105:5–16

    Article  Google Scholar 

  95. Hou S, Li L (2011) Rapid characterization of woody biomass digestibility and chemical composition using near-infrared spectroscopyfree access. J Integr Plant Biol 53:166–175. https://doi.org/10.1111/j.1744-7909.2010.01003.x

    Article  Google Scholar 

  96. Liu L, Ye XP, Womac AR, Sokhansanj S (2010) Variability of biomass chemical composition and rapid analysis using FT-NIR techniques. Carbohydr Polym 81:820–829. https://doi.org/10.1016/j.carbpol.2010.03.058

    Article  Google Scholar 

  97. Jin S, Chen H (2007) Near-infrared analysis of the chemical composition of rice straw. Ind Crop Prod 26:207–211. https://doi.org/10.1016/j.indcrop.2007.03.004

    Article  Google Scholar 

  98. Labbé N, Ye XP, Franklin JA et al (2008) Analysis of switchgrass characteristics using near infrared spectroscopy. BioResources 3:1329–1348. https://doi.org/10.15376/biores.3.4.1329-1348

    Article  Google Scholar 

  99. Kelley SS, Rowell RM, Davis M et al (2004) Rapid analysis of the chemical composition of agricultural fibers using near infrared spectroscopy and pyrolysis molecular beam mass spectrometry. Biomass Bioenergy 27:77–88. https://doi.org/10.1016/j.biombioe.2003.11.005

    Article  Google Scholar 

  100. Terinte N, Ibbett R, Schuster KC (2011) Overview on native cellulose and microcrystalline cellulose I structure studied by X-ray diffraction (WAXD): comparison between measurement techniques. Lenzinger Berichte 89:118–131

    Google Scholar 

  101. Lu F, Ralph J (2011) Solution-state NMR of lignocellulosic biomass. J Biobased Mater Bioenergy 5:169–180. https://doi.org/10.1002/9781119217619.ch9

    Article  Google Scholar 

  102. Pu Y, Hallac B, Ragauskas AJ (2013) Plant biomass characterization: application of solution-and solid-state NMR spectroscopy. Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals 369-390. https://doi.org/10.1002/9780470975831.ch18

  103. Fu L, McCallum SA, Miao J, Hart C, Tudryn GJ, Zhang F, Linhardt RJ (2015) Rapid and accurate determination of the lignin content of lignocellulosic biomass by solid-state NMR. Fuel 141:39–45. https://doi.org/10.1016/j.fuel.2014.10.039

    Article  Google Scholar 

  104. Gamble GR, Sethuraman A, Akin DE, Eriksson KE (1994) Biodegradation of lignocellulose in Bermuda grass by white rot fungi analyzed by solid-state 13C nuclear magnetic resonance. Appl Environ Microbiol 60:3138–3144. https://doi.org/10.1128/AEM.60.9.3138-3144.1994

    Article  Google Scholar 

  105. Lambert E, Aguié-Béghin V, Dessaint D, Foulon L, Chabbert B, Paës G, Molinari M (2018) Real time and quantitative imaging of lignocellulosic films hydrolysis by atomic force microscopy reveals lignin recalcitrance at nanoscale. Biomacromolecules 20:515–527. https://doi.org/10.1021/acs.biomac.8b01539

    Article  Google Scholar 

  106. Liu Q, Lu Y, Aguedo M, Jacquet N, Ouyang C, He W, Yan C, Bai W, Guo R, Goffin D, Song J, Richel A (2017) Isolation of high-purity cellulose nanofibers from wheat straw through the combined environmentally friendly methods of steam explosion, microwave-assisted hydrolysis, and microfluidization. ACS Sustain Chem Eng 5:6183–6191. https://doi.org/10.1021/acssuschemeng.7b01108

    Article  Google Scholar 

  107. Singh G, Bremmell KE, Griesser HJ, Kingshott P (2015) Colloid-probe AFM studies of the interaction forces of proteins adsorbed on colloidal crystals. Soft Matter 11:3188–3197. https://doi.org/10.1039/C4SM02669A

    Article  Google Scholar 

  108. Mahesh S, Manickavasagan A, Jayas DS, Paliwal J, White NDG (2008) Feasibility of near-infrared hyperspectral imaging to differentiate Canadian wheat classes. Biosyst Eng 101:50–57. https://doi.org/10.1016/j.biosystemseng.2008.05.017

    Article  Google Scholar 

  109. Feng X, Yu C, Liu X, Chen Y, Zhen H, Sheng K, He Y (2018) Nondestructive and rapid determination of lignocellulose components of biofuel pellet using online hyperspectral imaging system. Biotechnol Biofuels 11:88. https://doi.org/10.1186/s13068-018-1090-3

    Article  Google Scholar 

  110. Araya JA, Carneiro RL, Arévalo C, Freer J, Castillo RDP (2017) Single pixel quantification strategies using middle infrared hyperspectral imaging of lignocellulosic fibers and MCR-ALS analysis. Microchem J 134:164–172. https://doi.org/10.1016/j.microc.2017.05.019

    Article  Google Scholar 

  111. Ma T, Inagaki T, Tsuchikawa S (2020) Rapidly visualizing the dynamic state of free, weakly, and strongly hydrogen-bonded water with lignocellulosic material during drying by near-infrared hyperspectral imaging. Cellulose 27:4857–4869. https://doi.org/10.1007/s10570-020-03117-6

    Article  Google Scholar 

  112. Crica LE, Wengenroth J, Tiainen H, Ionita M, Haugen HJ (2016) Enhanced X-ray absorption for micro-CT analysis of low-density polymers. J Biomater Sci Polym Ed 27:805–823. https://doi.org/10.1080/09205063.2016.1152856

    Article  Google Scholar 

  113. Hémonnot CY, Köster S (2017) Imaging of biological materials and cells by X-ray scattering and diffraction. ACS Nano 11:8542–8559. https://doi.org/10.1021/acsnano.7b03447

    Article  Google Scholar 

  114. Rawson SD, Maksimcuka J, Withers PJ, Cartmell SH (2020) X-ray computed tomography in life sciences. BMC Biol 18:1–15. https://doi.org/10.1186/s12915-020-0753-2

    Article  Google Scholar 

  115. Golding CG, Lamboo LL, Beniac DR, Booth TF (2016) The scanning electron microscope in microbiology and diagnosis of infectious disease. Sci Rep 6:26516. https://doi.org/10.1038/srep26516

    Article  Google Scholar 

  116. Karimi K, Taherzadeh MJ (2016) A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Bioresour Technol 200:1008–1018. https://doi.org/10.1016/j.biortech.2015.11.022

    Article  Google Scholar 

  117. Donohoe BS, Ciesielski PN, Vinzant TB (2012) Preservation and preparation of lignocellulosic biomass samples for multi-scale microscopy analysis. In Biomass Conversion: 31-47. Humana Press, Totowa. https://doi.org/10.1007/978-1-61779-956-3_4

  118. Thiberge S, Nechushtan A, Sprinzak D, Gileadi O, Behar V, Zik O, Chowers Y, Michaeli S, Schlessinger J, Moses E (2004) Scanning electron microscopy of cells and tissues under fully hydrated conditions. Proc Natl Acad Sci 101:3346–3351. https://doi.org/10.1073/pnas.0400088101

    Article  Google Scholar 

  119. Kirk SE, Skepper JN, Donald AM (2009) Application of environmental scanning electron microscopy to determine biological surface structure. J Microsc 233:205–224. https://doi.org/10.1111/j.1365-2818.2009.03111.x

    Article  MathSciNet  Google Scholar 

  120. St. Croix CM, Shand SH, Watkins SC (2005) Confocal microscopy: comparisons, applications, and problems. Biotechniques 39:S2–S5. https://doi.org/10.2144/000112089

    Article  Google Scholar 

  121. Wanninger A (2007) The application of confocal microscopy and 3D imaging software in functional, evolutionary, and developmental zoology: reconstructing myo-and neurogenesis in space and time. Modern Res Educ Topics Microsc 1:353–361

    Google Scholar 

  122. Smolla M, Ruchty M, Nagel M, Kleineidam CJ (2014) Clearing pigmented insect cuticle to investigate small insects’ organs in situ using confocal laser-scanning microscopy (CLSM). Arthropod Struct Dev 43:175–181. https://doi.org/10.1016/j.asd.2013.12.006

    Article  Google Scholar 

  123. Manickavasagan A, Jayasuriya H (Eds.). (2014) Imaging with electromagnetic spectrum: applications in food and agriculture. Springer. https://doi.org/10.1007/978-3-642-54888-8

  124. Fardim P, Ferreira MM, Durán N (2002) Multivariate calibration for quantitative analysis of eucalypt kraft pulp by NIR spectrometry. J Wood Chem Technol 22:67–81. https://doi.org/10.1081/WCT-120004435

    Article  Google Scholar 

  125. Hein PR, Pakkanen H, Santos AAD (2017) Challenges in the use of near infrared spectroscopy for improving wood quality: a review. Forest Syst 26:26. https://doi.org/10.5424/fs/2017263-11892

    Article  Google Scholar 

  126. Beć KB, Grabska J, Huck CW (2020) Near-infrared spectroscopy in bio-applications. Molecules 25:2948. https://doi.org/10.3390/molecules25122948

    Article  Google Scholar 

  127. Prieto N, Pawluczyk O, Dugan MER, Aalhus JL (2017) A review of the principles and applications of near-infrared spectroscopy to characterize meat, fat, and meat products. Appl Spectrosc 71:1403–1426. https://doi.org/10.1177/0003702817709299

    Article  Google Scholar 

  128. Dixit Y, Casado-Gavalda MP, Cama-Moncunill R, Cama-Moncunill X, Markiewicz-Keszycka M, Cullen PJ, Sullivan C (2017) Developments and challenges in online NIR spectroscopy for meat processing. Compr Rev Food Sci Food Saf 16:1172–1187. https://doi.org/10.1111/1541-4337.12295

    Article  Google Scholar 

  129. Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM, Fielden PR, Fogarty SW, Fullwood NJ, Heys KA, Hughes C, Lasch P, Martin-Hirsch PL, Obinaju B, Sockalingum GD, Sulé-Suso J, Strong RJ, Walsh MJ, Wood BR, Gardner P, Martin FL (2014) Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc 9:1771–1791. https://doi.org/10.1038/nprot.2014.110

    Article  Google Scholar 

  130. Petibois C, Piccinini M, Guidi MC, Marcelli A (2010) Facing the challenge of biosample imaging by FTIR with a synchrotron radiation source. J Synchrotron Radiat 17:1–11. https://doi.org/10.1107/S0909049509046056

    Article  Google Scholar 

  131. Kimber JA, Kazarian SG (2017) Spectroscopic imaging of biomaterials and biological systems with FTIR microscopy or with quantum cascade lasers. Anal Bioanal Chem 409:5813–5820. https://doi.org/10.1007/s00216-017-0574-5

    Article  Google Scholar 

Download references

Funding

This work was partially supported by Barrett Food Engineering Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Loong-Tak Lim or Annamalai Manickavasagan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.S., Lim, LT. & Manickavasagan, A. Imaging and spectroscopic techniques for microstructural and compositional analysis of lignocellulosic materials: a review. Biomass Conv. Bioref. 13, 499–517 (2023). https://doi.org/10.1007/s13399-020-01075-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01075-4

Keywords

Navigation