Skip to main content
Log in

Effect of external electric field on morphology of copper phthalocyanine-fullerene blended films during annealing

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The thin-film morphology and segregated phases of constituents in blends of organic semiconductors play an important role in determining the performance of devices fabricated with these constituents. In this study, we explored the effect of an external electric field applied during annealing on the morphology and phase of blended films of two popular organic semiconductors, copper pthalocyanine (CuPc) and buckminsterfullerene (C60). Films of different blend ratios annealed at various temperatures in both the presence and absence of an electric field were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and ultraviolet-visible (UV-vis) spectroscopy. The characteristics of annealed pristine CuPc films were also included for comparison. The observed changes in the properties of the blended films following the annealing, including the abrupt phase segregation of the blended constituents in the films, are discussed. The polarizability of the molecules was calculated using density functional theory (DFT) to explain the interaction, stacking, and segregation of the molecules in the blend. The results showed that application of an electric field during annealing of the blended films is an additional control parameter that can help tune the properties of the blended film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Schünemann, D. Wynands, L. Wilde, M. P. Hein, S. Pfützner, and C. Elschner, Phys. Rev. B 85, 245314 (2012).

    Article  Google Scholar 

  2. Z. Wang, T. Miyadera, T. Yamanari, and Y. Yoshida, ACS Appl. Mater. Interfaces 6, 6369 (2014).

    Article  Google Scholar 

  3. T. Kaji, M. Zhang, S. Nakao, K. Iketaki, K. Yokoyama, C. W. Tang, and M. Hiramoto, Adv. Mater. 23, 3320 (2011).

    Article  Google Scholar 

  4. I. Kim and G. E. Jabbour, Synth. Met. 162, 102 (2012).

    Article  Google Scholar 

  5. J. W. Kim, H. J. Kim, H. H. Lee, T. Kim, and J.-J. Kim, Adv. Funct. Mater. 21, 2067 (2011).

    Article  Google Scholar 

  6. P. Sullivan, S. Heutz, S. M. Schultes, and T. S. Jones, Appl. Phys. Lett. 84, 1210 (2004).

    Article  Google Scholar 

  7. A. Bagui and S. S. K. Iyer, IEEE T. Electron Dev. 58, 4061 (2011).

    Article  Google Scholar 

  8. P. Peumans, S. Uchida, and S. R. Forrest, Nature 425, 158 (2003).

    Article  Google Scholar 

  9. A. Prasad Parhi and S. S. Kumar Iyer, J. Cryst. Growth 380, 123 (2013).

    Article  Google Scholar 

  10. A. Bagui and S. S. K. Iyer, Org. Electron. 15, 1387 (2014).

    Article  Google Scholar 

  11. T. Mandal, A. Garg, and Deepak, J. Appl. Phys. 114, 154517 (2013).

    Article  Google Scholar 

  12. J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, Appl. Phys. Lett. 85, 5757 (2004).

    Article  Google Scholar 

  13. D. X. Wang, Y. Tanaka, M. Iizuka, S. Kuniyoshi, K. Kudo, and K. Tanaka, Jpn. J. Appl. Phys. 38, 256 (1999).

    Article  Google Scholar 

  14. Y. Qiu, Y. Gao, P. Wei, and L. Wang, Appl. Phys. Lett. 80, 2628 (2002).

    Article  Google Scholar 

  15. K. S. Karimov, I. Qazi, T. A. Khan, P. H. Draper, F. A. Khalid, and M. Mahroof-Tahir, Environ. Monit. Assess. 141, 323 (2008).

    Article  Google Scholar 

  16. A. K. Bal, J. Electron. Mater. 44, 144 (2014).

    Article  Google Scholar 

  17. M. Warner, S. Din, I. S. Tupitsyn, G. W. Morley, A. Marshall Stoneham, J. A. Gardener, Z. Wu, A. J. Fisher, S. Heutz, C. W. M. Kay, and G. Aeppli, Nature 503, 504 (2013).

    Article  Google Scholar 

  18. M. Serri, W. Wu, L. R. Fleet, N. M. Harrison, C. F. Hirjibehedin, C. W. Kay, A. J. Fisher, G. Aeppli, and S. Heutz, Nat Commun. 5, 3079 (2014).

    Article  Google Scholar 

  19. J. Li, Z. Pu, Z. Wang, Y. Long, K. Jia, and X. Liu, J. Electron. Mater. 44, 2378 (2015).

    Article  Google Scholar 

  20. Z. Pu, L. Tong, Y. Long, W. Yang, X. Huang, and X. Liu, J. Electron. Mater. 43, 2597 (2014).

    Article  Google Scholar 

  21. J.-S. Lee, Electron. Mater. Lett. 7, 175 (2011).

    Article  Google Scholar 

  22. J. Lee, S.-I. Jin, C. R. Park, and S. Yim, Electron. Mater. Lett. 11, 113 (2015).

    Article  Google Scholar 

  23. D. Hong, Y. R. Do, H. T. Kwak, and S. Yim, J. Appl. Phys. 109, 063507 (2011).

    Article  Google Scholar 

  24. Y. Zhou, T. Taima, T. Miyadera, T. Yamanari, M. Kitamura, K. Nakatsu, and Y. Yoshida, Appl. Phys. Lett. 100, 233302 (2012).

    Article  Google Scholar 

  25. K. Xiao, R. Li, J. Tao, E. A. Payzant, I. N. Ivanov, A. A. Puretzky, W. Hu, and D. B. Geohegan, Adv. Funct. Mater. 19, 3776 (2009).

    Article  Google Scholar 

  26. Y. Sakakibara, K. Saito, and T. Tani, Jpn. J. Appl. Phys. 37, 695 (1998).

    Article  Google Scholar 

  27. R. Chaim, Scripta Mater. 66, 269 (2012).

    Article  Google Scholar 

  28. S. Karan and B. Mallik, Solid State Commun. 143, 289 (2007).

    Article  Google Scholar 

  29. E. A. Ough, M. J. Stillman, and K. A. M. Creber, Can. J. Chem. 71, 1898 (1993).

    Article  Google Scholar 

  30. J. Mack and M. J. Stillman, Inorg. Chem. 40, 812 (2001).

    Article  Google Scholar 

  31. M. Ashida, N. Uyeda, and E. Suito, J. Cryst. Growth 8, 45 (1971).

    Article  Google Scholar 

  32. C. Janiak, J. Chem. Soc., Dalton Trans., 3885 (2000).

    Google Scholar 

  33. N. Marom, O. Hod, G. E. Scuseria, and L. Kronik, J. Chem. Phys. 128, 164107 (2008).

    Article  Google Scholar 

  34. S. Liu, Y. J. Lu, M. M. Kappes, and J. A. Ibers, Science 254, 408 (1991).

    Article  Google Scholar 

  35. C. Kittel, Introduction to Solid-State Physics, p. 56, John Wiley & Sons Inc., New York (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sundar Kumar Iyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parhi, A.P., Iyer, S.S.K. Effect of external electric field on morphology of copper phthalocyanine-fullerene blended films during annealing. Electron. Mater. Lett. 12, 260–269 (2016). https://doi.org/10.1007/s13391-015-5246-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-5246-z

Keywords

Navigation