Skip to main content
Log in

Hybrid dielectric layer for low operating voltages of transparent and flexible organic complementary inverter

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Although flexibility and transparency are considered advantages of organic electronic devices along with low processing cost and the possibility of large-area production, high operating voltages and metallic contacts are obstacles to their application in real electronic products. In this work, flexible and transparent organic complementary inverters that can be operated with low voltage were fabricated on a plastic substrate. Two different air-stable organic semiconductors, fluorinated copper phthalocyanine and pentacene, are used for n-type and p-type transistors, respectively. An ITO gate electrode was deposited by sputtering, and a hybrid dielectric layer with a thin Al2O3 layer and self-assembled monolayers (SAMs) was fabricated to reduce the operation voltage. To confirm the properties of the hybrid dielectric layer, the capacitance and gate leakage current were measured. Then, source and drain electrodes were formed from gold or ITO specifically for fully transparent devices. For the ITO electrodes, a MoO3 interlayer was incorporated between the pentacene and ITO to reduce the contact resistance caused by mismatch of workfunction. Finally, we evaluated the low-voltage operation of the flexible organic inverters and the fully transparent device through transmittance measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. D. Leeuw, Nature 401, 685 (1999).

    Article  Google Scholar 

  2. U. Zschieschang, F. Ante, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, K. Kern, and H. Klauk, Adv. Mater. 22, 982 (2010).

    Article  Google Scholar 

  3. H. Klauk, M. Halik, U. Zschieschang, G. N. Schmid, W. Radlik, and W. Weber, J. Appl. Phys. 92, 5259 (2002).

    Article  Google Scholar 

  4. H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, M. Kastler, and A. Facchetti, Nature 457, 679 (2009).

    Article  Google Scholar 

  5. D. H. Kim, D. Y. Lee, H. S. Lee, W. H. Lee, Y. H. Kim, J. I. Han, and K. Cho, Adv. Mater. 19, 678 (2007).

    Article  Google Scholar 

  6. H. W. Lee, S. J. Lee, J. R. Koo, E. S. Cho, S. J. Kwon, W. Y. Kim, J. Park, and Y. K. Kim, Electron. Mater. Lett. 9, 865 (2013).

    Article  Google Scholar 

  7. Y. K. Lee, M. Maniruzzaman, C. Lee, M. J. Lee, E.-G. Lee, and J. Lee, Electron. Mater. Lett. 9, 741 (2013).

    Article  Google Scholar 

  8. C. Kim, J.-M. Song, J.-S. Lee, and M. J. Lee, Nanotechnology 25, 014016 (2014).

    Article  Google Scholar 

  9. T. T. Steckler, M. J. Lee, Z. Chen, O. Fenwick, M. R. Andersson, F. Cacialli, and H. Sirringhaus, J. Mater. Chem. C 2, 5133 (2014).

    Article  Google Scholar 

  10. T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, T. Sakurai, and T. Someya, Science 326, 1516 (2009).

    Article  Google Scholar 

  11. Z.-T. Zhu, J. T. Mason, R. D. Dieckmann, and G. G. Malliaras, Appl. Phys. Lett. 81, 4643 (2002).

    Article  Google Scholar 

  12. A. S. K. V. Steven and E. Molesa, IEEE Transactions on Components and Packaging Technologies 28, 742 (2005).

    Article  Google Scholar 

  13. E. Cantatore, T. C. T. Geuns, G. H. Gelinck, E. V. Veenendaal, A. F. A. Gruijthuijsen, L. Schrijnemakers, S. Drews, and D. M. D. Leeuw, IEEE J. Solid-state Circuits 42, 84 (2007).

    Article  Google Scholar 

  14. L. Zhou, A. Wanga, S.-C. Wu, J. Sun, S. Park, and T. N. Jackson, Appl. Phys. Lett. 88, 083502 (2006).

    Article  Google Scholar 

  15. G. H. Gelinck, H. E. Huitema, E. Van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. Van Der Putten, T. C. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. Van Rens, and D. M. De Leeuw, Nat. Mater. 3, 106 (2004).

    Article  Google Scholar 

  16. S. Kim, H. J. Kwon, S. Lee, H. Shim, Y. Chun, W. Choi, J. Kwack, D. Han, M. Song, S. Kim, S. Mohammadi, I. Kee, and S. Y. Lee, Adv. Mater. 23, 3511 (2011).

    Article  Google Scholar 

  17. W. J. Yu, S. H. Chae, S. Y. Lee, D. L. Duong, and Y. H. Lee, Adv. Mater. 23, 1889 (2011).

    Article  Google Scholar 

  18. M. Ramuz, B. C. Tee, J. B. Tok, and Z. Bao, Adv. Mater. 24, 3223 (2012).

    Article  Google Scholar 

  19. S. J. Kim, J. M. Song, and J. S. Lee, J. Mater. Chem. 21, 14516 (2011).

    Article  Google Scholar 

  20. D.-I. Kim, B.-U. Hwang, N. T. Tien, I.-J. Kim, and N.-E. Lee, Electron. Mater. Lett. 8, 11 (2012).

    Article  Google Scholar 

  21. S. Tatemichi, M. Ichikawa, S. Kato, T. Koyama, and Y. Taniguchi, Physica Status Solidi (RRL)— Rapid Research Letters 2, 47 (2008).

    Article  Google Scholar 

  22. M. P. Walser, W. L. Kalb, T. Mathis, T. J. Brenner, and B. Batlogg, Appl. Phys. Lett. 94, 053303 (2009).

    Article  Google Scholar 

  23. X.-H. Zhang, W. J. Potscavage, S. Choi, and B. Kippelen, Appl. Phys. Lett. 94, 043312 (2009).

    Article  Google Scholar 

  24. M. Kitamura and Y. Arakawa, Appl. Phys. Lett. 91, 053505 (2007).

    Article  Google Scholar 

  25. J. H. Na, M. Kitamura, and Y. Arakawa, Thin Solid Films 517, 2079 (2009).

    Article  Google Scholar 

  26. H. Klauk, M. Halik, U. Zschieschang, F. Eder, D. Rohde, G. Schmid, and C. Dehm, IEEE Transactions on Electron Devices 52 (2005).

    Google Scholar 

  27. S. De Vusser, S. Steudel, K. Myny, J. Genoe, and P. Heremans, Appl. Phys. Lett. 88, 162116 (2006).

    Article  Google Scholar 

  28. Y. Choi, H. Kim, K. Sim, K. Park, C. Im, and S. Pyo, Organic Electronics 10, 1209 (2009).

    Article  Google Scholar 

  29. A. Rani, J.-M. Song, M. J. Lee, and J.-S. Lee, Appl. Phys. Lett. 101, 233308 (2012).

    Article  Google Scholar 

  30. M. J. Lee, D. Gupta, N. Zhao, M. Heeney, I. McCulloch, and H. Sirringhaus, Adv. Funct. Mater. 21, 932 (2011).

    Article  Google Scholar 

  31. M. J. G. J. R. Ahlbin, D. R. Ball, A. W. Witulski, B. L. Bhuva, R. A. Reed, G. Vizkelethy, and L. W. Massengill, IEEE Transactions on Nuclear Science 57, 3380 (2010).

    Google Scholar 

  32. T. Sekitani, S. Iba, Y. Kato, and T. Someya, Appl. Phys. Lett. 85, 3902 (2004).

    Article  Google Scholar 

  33. Z. Bao, A. J. Lovinger, and J. Brown, J. Am. Chem. Soc. 120, 207 (1998).

    Article  Google Scholar 

  34. E. C. E. P. Guseva, D. A. Buchanana, M. Gribelyukb, M. Copela, H. Okorn-Schmidt, and C. D’Emic, Microelectron. Eng. 59, 341 (2001).

    Article  Google Scholar 

  35. T. Sekitani, U. Zschieschang, H. Klauk, and T. Someya, Nature Mater. 9, 1015 (2010).

    Article  Google Scholar 

  36. H. Klauk, U. Zschieschang, J. Pflaum, and M. Halik, Nature 445, 745 (2007).

    Article  Google Scholar 

  37. M. M. Joseph E. McDermott, I. G. Hill, J. Hwang, A. Kahn, and A. J. S. Steven L. Bernasek, Am. Chem. Soc. 111, 12333 (2007).

    Google Scholar 

  38. M. Mottaghi and G. Horowitz, Organic Electronics 7, 528 (2006).

    Article  Google Scholar 

  39. D. M. Spori, N. V. Venkataraman, S. G. P. Tosatti, Firat Durmaz, N. D. Spencer, and S. ZüRcher, Am. Chem. Soc. 23, 8053 (2007).

    Google Scholar 

  40. D. J. Milliron, I. G. Hill, C. Shen, A. Kahn, and J. Schwartz, J. Appl. Phys. 87, 572 (2000).

    Article  Google Scholar 

  41. K. Sugiyama, H. Ishii, Y. Ouchi, and K. Seki, J. Appl. Phys. 87, 295 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi Jung Lee.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Go, M.S., Song, JM., Kim, C. et al. Hybrid dielectric layer for low operating voltages of transparent and flexible organic complementary inverter. Electron. Mater. Lett. 11, 252–258 (2015). https://doi.org/10.1007/s13391-014-4290-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-014-4290-4

Keywords

Navigation