Skip to main content
Log in

Synthesis, characterization and surface wettability study of polypyrrole films: Effect of applied constant current density

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Polypyrrole thin films were prepared by galvanostatic mode of electrodeposition. The applied constant current density changes structural, optical and surface wettability properties of polypyrrole thin films. The prepared films were characterized for structural, optical and surface wettability study. Fourier transform infrared spectroscopy shows the benzoid and qunoid like structures in polypyrrole films. The UV-Visible absorption study shows that the optical density varies with the applied deposition current density. The band gap energy calculated from the Tauc’s plot was found to be 2.25 eV and shows the film is in semiconductor nature. The surface wettability study confirms hydrophilic nature of polypyrrole films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Chang, C. R. A. Leon, and I. W. Hunter, Langmuir, 28, 4805 (2012).

    Article  Google Scholar 

  2. M. J. Higgins, S. T. McGovern, and G. G. Wallace, Langmuir, 25, 3627(2009).

    Article  Google Scholar 

  3. B. Rezek, J. Čermák, A. Kromka, M. Ledinský, and J. Kočka, Diam. Relat. Mater. 18, 249 (2009).

    Article  Google Scholar 

  4. D. Gea, X. Tian, R. Qi, S. Huang, J. Mu, S. Hong, S. Ye, X. Zhang, D. Li, and W. Shi, Electrochim. Acta 55, 271 (2009).

    Article  Google Scholar 

  5. R. Sharma, A. Rastogi, and S. Desu, Electrochem. Commun. 10, 268 (2008).

    Article  Google Scholar 

  6. R. Sharma, A. Rastogi, and S. Desu, Electrochim. Acta, 53, 7690 (2008).

    Article  Google Scholar 

  7. R. Pytel, E. Thomas, and I. Hunter, Polymer 49, 2008 (2008).

    Article  Google Scholar 

  8. R. Pytel, E. Thomas, Y. Chen and I. Hunter, Polymer 49, 1338 (2008).

    Article  Google Scholar 

  9. X. Yang, T. Dai, Z. Zhu, and Y. Lu, Polymer 48, 4021 (2007).

    Article  Google Scholar 

  10. R. Singh, J. Kumar, A. Kaur, K. Yadav, R. Bhattacharyya, E. Hussain, and S. Ali, Polymer 47, 6042 (2006).

    Article  Google Scholar 

  11. S. Aydogan, M. Saglam, and A. Turut, J. Polym. Sci. Pol. Phys. 44, 1572 (2006).

    Article  Google Scholar 

  12. M. Saglam, D. Korucu, and A. Turut, Polymer, 45, 7335 (2004).

    Article  Google Scholar 

  13. S. Radhakrishnan, A. Adhikari, and D. Awasthi, Chem. Phys. Lett. 341, 518 (2001).

    Article  Google Scholar 

  14. L. Bay, K. West, and S. Skaarup, Polymer 43, 3527 (2002).

    Article  Google Scholar 

  15. S. Hamilton, M. Hepher, and J. Sommerville, Sensor. Actuat. B. Chem. 107, 424 (2005).

    Article  Google Scholar 

  16. A. Hussain, D. Saikia, F. Singh, D. Avasthi, and A. Kumar, Nucl. Instrum. Meth. B. 240, 834 (2005).

    Article  Google Scholar 

  17. P. Somani and S. Radhakrishnan, Chem. Phys. Lett. 292, 218 (1998).

    Article  Google Scholar 

  18. S. Benabderrahmane, S. Bousalem, C. Mangeney, A. Azioune, M. Vaulay, and M. Chehimi, Polymer 46, 1339 (2005).

    Article  Google Scholar 

  19. H. Kang and K. Geckeler, Polymer 41, 6931 (2000).

    Article  Google Scholar 

  20. X. Yang, T. Dai, and Y. Lu, Polymer 47, 441 (2006).

    Article  Google Scholar 

  21. H. Dias, M. Fianchini, and R. Rajapakse, Polymer 47, 7349 (2006).

    Article  Google Scholar 

  22. P. Xu, X. Han, B. Zhang, N. Mack, S. Jeon, and H. Wang, Polymer 50, 2624 (2009).

    Article  Google Scholar 

  23. D. Kepinska, G. Blanchard, P. Krysinski, J. Stolarski, K. Kijewska, and M. Mazur, Langmuir 27, 12720 (2011).

    Article  Google Scholar 

  24. X. Liang, Z. Wen, Y. Liu, H. Zhang, J. Jin, M. Wu, and X. Wu, J. Power. Sources 206, 409 (2012).

    Article  Google Scholar 

  25. Y. Furukawa, S. Tazawa, Y. Fujii, and I. Harada, Synthetic Met. 24, 329 (1988).

    Article  Google Scholar 

  26. J. Zang, C. Li, S. Bao, X. Cui, Q. Bao, and C. Sun, Macromolecules 41, 7053 (2008).

    Article  Google Scholar 

  27. T. Vernitskaya and O. Efimov, Russ. Chem. Rev. 66, 443 (1997).

    Article  Google Scholar 

  28. S. Cho and H. Moon, BioChip J. 2, 79 (2008).

    Google Scholar 

  29. L. Leger and J. Joanny, Rep. Prog. Phys. 55, 431 (1992).

    Article  Google Scholar 

  30. R. Blossey, Nat. Mater. 2, 301 (2003).

    Article  Google Scholar 

  31. E. Hermelin, J. Petitjean, J. Lacroix, K. Ching, J. Tanguy, and P. Lacaze, Chem. Mater. 20, 4447 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. V. Thombare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thombare, J.V., Lohar, G.M., Shinde, S.K. et al. Synthesis, characterization and surface wettability study of polypyrrole films: Effect of applied constant current density. Electron. Mater. Lett. 11, 266–270 (2015). https://doi.org/10.1007/s13391-014-4082-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-014-4082-x

Keywords

Navigation