Skip to main content
Log in

Microstructural effect on the photoelectrochemical performance of hematite-Fe2O3 photoanode for water splitting

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Microstructure modification by surfactant as well as heat-treatment was found to significantly influence the photoelectrochemical properties of a hematite-Fe2O3 thin film photoanode, which was coated on fluorine-doped tin oxide (FTO) substrate via a simple dipping process in aqueous Fe(NO3)3 solution. The film treated with the surfactant TBAOH showed a substantially improved uniformity in terms of the dispersion of Fe2O3 particles on the substrate. Heat-treatment conditions were also investigated and optimized for the improvement of the performance. A photocurrent density of about 1.32 mA/cm2 at 1.23 (V vs. RHE) was obtained under 100 mW/cm2 UV-Vis light illumination for the Fe2O3 photoanode optimized with the surfactant and heat-treatment. The onset voltage for the photocurrent initiation was measured to be 0.87 (V vs. RHE). Our results suggest that application of a surfactant along with an optimized heat-treatment is a promising approach to improve the photoelectrochemical performance of the Fe2O3-based photoanode film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Fujishima and K. Honda, Nature 238, 37 (1972).

    Article  Google Scholar 

  2. P. Kumar, P. Sharma, R. Shrivastav, S. Dass, and V. Satsangi, Int. J. of Hydrogen Energy 36, 2777 (2011).

    Article  Google Scholar 

  3. P. R. Mishra, P. K. Shukla, and O. N. Shrivastava, Int. J. of Hydrogen Energy 32, 1680 (2007).

    Article  Google Scholar 

  4. Y. Sun, C. J. Murphy, K. R. Reyes-Gil, E. A. Reyes-Garcia, J. M Thornton, N. A. Morris, and D. Raftery, Int. J. of Hydrogen Energy 34, 8476 (2009).

    Article  Google Scholar 

  5. E. Thimsen, F. L. Formal, M. Gratzel, and S. C. Warren, Nano Lett. 11, 35 (2011).

    Article  Google Scholar 

  6. S. Y. Sina, V. Bala, and W. K. Upul, Int. J. of Hydrogen Energy 35, 10155 (2010).

    Article  Google Scholar 

  7. T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, Int. J. of Hydrogen Energy 27, 991 (2002).

    Article  Google Scholar 

  8. A. L. Stroyuk, I. V. Sobran, and S. Y. Kuchmiy, J. Photochem. and Photobio. A: Chem. 192, 98 (2007).

    Article  Google Scholar 

  9. S. Kuang, L. Yang, S. Luo, and Q. Cai, Appl. Surf. Sci. 255, 7385 (2009).

    Article  Google Scholar 

  10. A. Kay, I. Cesar, and M. Gratzel, J. Am. Chem. Soc. 128, 15714 (2006).

    Article  Google Scholar 

  11. D. K. Zhong, J. W. Sun, H. Inumaru, and D. R. Gamelin, J. Am. Chem. Soc. 131, 6086 (2009).

    Article  Google Scholar 

  12. M. W. Kanan and D. G. Nocera, Science 321, 1072 (2008).

    Article  Google Scholar 

  13. D. K. Zhong and D. R. Gamelin, J. Am. Chem. Soc. 132, 4202 (2010).

    Article  Google Scholar 

  14. S. Tilley, M. Cornuz, K. Sivula, and M. Gratzel, Angew. Chem. 49, 6405 (2010).

    Article  Google Scholar 

  15. A. Mao, G. Y. Han, and J. H. Park, J. Mater. Chem. 20, 2247 (2010).

    Article  Google Scholar 

  16. L. Li, Y. Yu, F. Meng, Y. Tan, R. J. Hamers, and S. Jin, Nano Lett. 12, 724 (2012).

    Article  Google Scholar 

  17. A. Kay, I. Cesar, and M. Gratzel, J. Am. Chem. Soc. 128, 15714 (2006).

    Article  Google Scholar 

  18. B. M. Klahr and T. W. Hamann, J. Phys. Chem. C 115, 8393 (2011).

    Article  Google Scholar 

  19. P. Sharma, P. Kumar, D. Deva, R. Shrivastav, S. Dass, and V. R. Satsangi, Int. J. of Hydrogen Energy 35, 10883 (2010).

    Article  Google Scholar 

  20. W. B. Ingler Jr. and S. U. Khan, Thin Solid Films 461, 301 (2004).

    Article  Google Scholar 

  21. Y. S. Hu, A. Kleiman-Schwarsctein, A. J. Forman, D. Hazen, J. N. Park, and E. W. McFarland, Chem. Mater. 12, 3803 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wooseung Kang or Sun-Jae Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noh, KJ., Kim, BR., Yoon, GJ. et al. Microstructural effect on the photoelectrochemical performance of hematite-Fe2O3 photoanode for water splitting. Electron. Mater. Lett. 8, 345–350 (2012). https://doi.org/10.1007/s13391-012-2007-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-012-2007-0

Keywords

Navigation