Skip to main content

Advertisement

Log in

Effects of Compression and Silica Addition on the Dielectric Properties of Epoxy Composites

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Composite dielectrics and insulators are emerging as replacement of neat epoxy because of their superior characteristics. However, methods of composite preparation, type and size of filler and stresses such as temperature and mechanical stresses influence these characteristics. In addition, inorganic oxides-based epoxy composites are expected to have good dielectric characteristics. In this work, effect of compression and silica on the dielectric properties of epoxy composites with reference to neat epoxy is explored. Epoxy microcomposite (15% by weight silica loading) and nanocomposites (2.5% and 5% by silica loadings) are prepared, and their dielectric properties are investigated before and after compression at 15 MPa. Overall epoxy nanocomposites with 5% nanosilica performed best having 0.09 dissipation factor and dielectric constant of 6.23. After compressing the samples at 70 °C and 15 MPa, dramatic increase in the dissipation factor of microcomposites was recorded where the average \( \kappa \) increased by a factor of 1.53–8.27 in comparison with 5.40 in the uncompressed form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vlastos, A.E.; Gubanski, S.M.: Surface structural changes of naturally aged silicone and EPDM composite insulators. IEEE Trans. Power Delive. 6(2), 888–900 (1991)

    Google Scholar 

  2. Kim, S.H.; Cherney, E.A.; Hackam, R.: The loss and recovery of hydrophobicity of RTV silicone rubber insulator coatings. IEEE Trans. Power Deliv. 5(3), 1491–1500 (1990)

    Google Scholar 

  3. Lee, K.H.; Kang, M.S.; Zhang, S.; Gu, Y.; Lodge, T.P.; Frisbie, C.D.: “Cut and stick” rubbery ion gels as high capacitance gate dielectrics. Adv. Mater. 24(32), 4457–4462 (2012)

    Google Scholar 

  4. Kornbluh, R.D.; Pelrine, R.; Joseph, J.; Heydt, R.; Pei, Q.; Chiba, S.: High-field electrostriction of elastomeric polymer dielectrics for actuation. In: Smart Structures and Materials 1999: Electroactive Polymer Actuators and Devices, vol. 3669, pp. 149–161. International Society for Optics and Photonics (1999)

  5. Bamji, S.S.; Bulinski, A.T.; Chen, Y.; Densley, R.J.: Threshold voltage for electrical tree inception in underground HV transmission cables. IEEE Trans. Electr. Insul. 27(2), 402–404 (1992)

    Google Scholar 

  6. Afia, R.S.; Mustafa, E.; Tamus, Z.Á.: Mechanical stresses on polymer insulating materials. In: 2018 International Conference on Diagnostics in Electrical Engineering (Diagnostika), pp. 1–4. IEEE (2018)

  7. Mishra, P.; Gayathri, C.S.; Sarathi, R.: Influence of salt fog test on silicone rubber insulating material under AC and DC voltages. INAE Lett. 4(1), 1–6 (2019)

    Google Scholar 

  8. Xie, C.; Lai, X.; Li, H.; Zeng, X.: Effective improvement of anti-tracking of addition-cure liquid silicone rubber via charge dissipation of fluorosilane-grafted silica. Polym. Degrad. Stab. 167, 250–258 (2019)

    Google Scholar 

  9. Khoon, L.T.; Zaini, N.F.M.; Mobarak, N.N.; Hassan, N.H.; Noor, S.A.M.; Mamat, S.; Loh, K.S.; KuBulat, K.H.; Su’ait, M.S.; Ahmad, A.: PEO based polymer electrolyte comprised of epoxidized natural rubber material (ENR50) for Li-Ion polymer battery application. Electrochim. Acta 316, 283–291 (2019)

    Google Scholar 

  10. Lee, S.H.; Lee, J.H.; Nam, D.H.; Cho, M.; Kim, J.; Chanthad, C.; Lee, Y.: Epoxidized natural rubber/chitosan network binder for silicon anode in lithium-ion battery. ACS Appl. Mater. Interfaces 10(19), 16449–16457 (2018)

    Google Scholar 

  11. Kong, Q.; Wu, T.; Zhang, J.; Wang, D.Y.: Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through layered copper phenylphosphate. Compos. Sci. Technol. 154, 136–144 (2018)

    Google Scholar 

  12. Zhou, L.; Zhang, G.; Feng, Y.; Zhang, H.; Li, J.; Shi, X.: Design of a self-healing and flame-retardant cyclotriphosphazene-based epoxy vitrimer. J. Mater. Sci. 53(9), 7030–7047 (2018)

    Google Scholar 

  13. Sanjay, M.R.; Madhu, P.; Jawaid, M.; Senthamaraikannan, P.; Senthil, S.; Pradeep, S.: Characterization and properties of natural fiber polymer composites: a comprehensive review. J. Clean. Prod. 172, 566–581 (2018)

    Google Scholar 

  14. Chiachio, M.; Chiachio, J.; Rus, G.: Reliability in composites—a selective review and survey of current development. Compos. B Eng. 43(3), 902–913 (2012)

    Google Scholar 

  15. Pierson, H.A.; Celik, E.; Abbott, A.; De Jarnette, H.; Gutierrez, L.S.; Johnson, K.; Koerner, H.; Baur, J.W.: Mechanical properties of printed epoxy-carbon fiber composites. Exp. Mech. 59, 843–857 (2019)

    Google Scholar 

  16. Cheng, K.C.; Lin, C.M.; Wang, S.F.; Lin, S.T.; Yang, C.F.: Dielectric properties of epoxy resin–barium titanate composites at high frequency. Mater. Lett. 61(3), 757–760 (2007)

    Google Scholar 

  17. Zhang, B.; Gao, W.; Chu, P.; Zhang, Z.; Zhang, G.: Trap-modulated carrier transport tailors the dielectric properties of alumina/epoxy nanocomposites. J. Mater. Sci. Mater. Electron. 29(3), 1964–1974 (2018)

    Google Scholar 

  18. Wang, R.; Xie, C.; Luo, S.; Gou, B.; Xu, H.; Zeng, L.: The influence mechanism of nanoparticles on the dielectric properties of epoxy resin. RSC Adv. 9(34), 19648–19656 (2019)

    Google Scholar 

  19. Bouzidi, A.; Omri, K.; Jilani, W.; Guermazi, H.; Yahia, I.S.: Influence of TiO2 incorporation on the microstructure, optical, and dielectric properties of TiO2/epoxy composites. J. Inorg. Organomet. Polym Mater. 28(3), 1114–1126 (2018)

    Google Scholar 

  20. Mahmood, H.; Vanzetti, L.; Bersani, M.; Pegoretti, A.: Mechanical properties and strain monitoring of glass-epoxy composites with graphene-coated fibers. Compos. A Appl. Sci. Manuf. 107, 112–123 (2018)

    Google Scholar 

  21. Wang, Z.; Yang, M.; Cheng, Y.; Liu, J.; Xiao, B.; Chen, S.; Huang, J.; Xie, Q.; Wu, G.; Wu, H.: Dielectric properties and thermal conductivity of epoxy composites using quantum-sized silver decorated core/shell structured alumina/polydopamine. Compos. A Appl. Sci. Manuf. 118, 302–311 (2019)

    Google Scholar 

  22. Khattak, A.; Amin, M.: Accelerated aging investigation of high voltage EPDM/silica composite insulators. J. Polym. Eng. 36(2), 199–209 (2016)

    Google Scholar 

  23. Amin, M.; Khattak, A.; Ali, M.: Accelerated aging investigation of silicone rubber/silica composites for coating of high-voltage insulators. Electr. Eng. 100(1), 217–230 (2018)

    Google Scholar 

  24. Khattak, A.; Amin, M.; Iqbal, M.; Abbas, N.: Life estimation and analysis of dielectric strength, hydrocarbon backbone and oxidation of high voltage multi stressed EPDM composites. Mater. Res. Express 5(2), 025003 (2018)

    Google Scholar 

  25. Khattak, A.; Iqbal, M.; Amin, M.: Aging analysis of high voltage silicone rubber/silica nanocomposites under accelerated weathering conditions. Sci. Eng. Compos. Mater. 24(5), 679–689 (2017)

    Google Scholar 

  26. Kudus, M.H.A.; Zakaria, M.R.; Othman, M.B.H.; Akil, H.M.; Javed, F.: Improvement of thermal conductivity and dielectric constant of graphene-filled epoxy nanocomposites using colloidal polymerization approach. Polym. Bull. 77, 2385–2404 (2019)

    Google Scholar 

  27. Wang, Z.; Yang, M.; Cheng, Y.; Liu, J.; Xiao, B.; Chen, S.; Wu, H.: Dielectric properties and thermal conductivity of epoxy composites using quantum-sized silver decorated core/shell structured alumina/polydopamine. Compos. Part A: Appl. Sci. Manuf. 118, 302–311 (2019)

    Google Scholar 

  28. Ragni, D.; Ferrotti, G.; Lu, X.; Canestrari, F.: Effect of temperature and chemical additives on the short-term ageing of polymer modified bitumen for WMA. Mater. Des. 160, 514–526 (2018)

    Google Scholar 

  29. Khattak, A.; Amin, M.: Influence of stresses and fillers on the aging behaviour of polymeric insulators. Rev. Adv. Mater. Sci. 44, 194–205 (2016)

    Google Scholar 

  30. Azadi, M.; Sayar, H.; Ghasemi-Ghalebahman, A.; Jafari, S.M.: Tensile loading rate effect on mechanical properties and failure mechanisms in open-hole carbon fiber reinforced polymer composites by acoustic emission approach. Compos. B Eng. 158, 448–458 (2019)

    Google Scholar 

  31. Ilangovan, S.; Kumaran, S.S.; Vasudevan, A.; Naresh, K.: Effect of silica nanoparticles on mechanical and thermal properties of neat epoxy and filament wounded E-glass/epoxy and basalt/epoxy composite tubes. Mater. Res. Express. 6, 0850e2 (2019)

    Google Scholar 

  32. Naranpanawe, L.; Ekanayake, C.; Saha, T.K.: Measurements on pressboard to understand the effect of solid insulation condition on monitoring of power transformer winding clamping pressure. IET Sci. Meas. Technol. 13(2), 186–192 (2018)

    Google Scholar 

  33. Chen, B.; Kollosche, M.; Stewart, M.; Busfield, J.; Carpi, F.: Electrical breakdown of dielectric elastomers: influence of compression, electrode’s curvature and environmental humidity. In: Electroactive Polymer Actuators and Devices (EAPAD) 2016, vol. 9798, p. 97980Q. International Society for Optics and Photonics (2016)

  34. Zou, C.; Fothergill, J.C.; Rowe, S.W.: The effect of water absorption on the dielectric properties of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 15(1), 106–117 (2008)

    Google Scholar 

  35. Xu, D.; Liu, B.; Zhang, G.; Long, S.; Wang, X.; Yang, J.: Effect of air plasma treatment on interfacial shear strength of carbon fiber–reinforced polyphenylene sulfide. High Perform. Polym. 28(4), 411–424 (2016)

    Google Scholar 

  36. Shen, J.T.; Buschhorn, S.T.; De Hosson, J.T.M.; Schulte, K.; Fiedler, B.: Pressure and temperature induced electrical resistance change in nano-carbon/epoxy composites. Compos. Sci. Technol. 115, 1–8 (2015)

    Google Scholar 

  37. Shen, W.; Ou, T.; Wang, J.; Qin, T.; Zhang, G.; Zhang, X.; Han, Y.; Ma, Y.; Gao, C.: Effects of high pressure on the electrical resistivity and dielectric properties of nanocrystalline SnO2. Sci. Rep. 8(1), 1–10 (2018)

    Google Scholar 

  38. Ali, A.; Khan, Z.S.; Jamil, M.; Khan, Y.; Ahmad, N.; Ahmed, S.: Simultaneous reduction and sulfonation of graphene oxide for efficient hole selectivity in polymer solar cells. Curr. Appl. Phys. 18, 599–610 (2018)

    Google Scholar 

  39. Chhetri, S.; Samanta, P.; Murmu, N.C.; Srivastava, S.K.; Kuila, T.: Electromagnetic interference shielding and thermal properties of non-covalently functionalized reduced graphene oxide/epoxy composites. AIMS Mater. Sci. 4, 61–74 (2016)

    Google Scholar 

  40. Singh, L.; Agarwal, S.; Bhattacharyya, S.; Sharma, U.; Ahalawat, S.: Preparation of silica nanoparticles and its beneficial role in cementitious materials. Nanomater. Nanotechnol. 1, 9 (2011)

    Google Scholar 

  41. Shokoohi, S.; Arefazar, A.; Khosrokhavar, R.: Silane coupling agents in polymer-based reinforced composites: a review. J. Reinf. Plast. Compos. 27, 473–485 (2008)

    Google Scholar 

  42. Zhao, S.; Zhang, J.; Zhao, S.; Li, W.; Li, H.: Effect of inorganic–organic interface adhesion on mechanical properties of Al2O3/polymer laminate composites. Compos. Sci. Technol. 63, 1009–1014 (2003)

    Google Scholar 

  43. Venkatesulu, B.: Studies on polymeric micro/nanocomposites for outdoor high voltage insulation. Doctoral dissertation, G23812, (2011)

  44. Ramirez, I.: A study of nanofilled silicone dielectrics for outdoor insulation. Doctoral dissertation, PhD thesis, Univ. Waterloo, Waterloo, Ontario, Canada (2009)

  45. Amin, M.; Ali, M.: Polymer nanocomposites for high voltage outdoor insulation applications. Rev. Adv. Mater. Sci. 40(3), 276–294 (2015)

    Google Scholar 

  46. Singha, S.; Thomas, M.J.: Dielectric properties of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 15(1), 12–23 (2008)

    Google Scholar 

  47. Chang, B.P.; Akil, H.M.; Nasir, R.B.M.: Comparative study of micro-and nano-ZnO reinforced UHMWPE composites under dry sliding wear. Wear 297(1), 1120–1127 (2013)

    Google Scholar 

  48. Momen, G.; Farzaneh, M.: Survey of micro/nano filler use to improve silicone rubber for outdoor insulators. Rev. Adv. Mater. Sci 27(1), 1–13 (2011)

    Google Scholar 

  49. Yu, J.; Huo, R.; Wu, C.; Wu, X.; Wang, G.; Jiang, P.: Influence of interface structure on dielectric properties of epoxy/alumina nanocomposites. Macromol. Res. 20(8), 816–826 (2012)

    Google Scholar 

  50. Singha, S.; Thomas, M.J.: Influence of filler loading on dielectric properties of epoxy-ZnO nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 16(2), 531–542 (2009)

    Google Scholar 

  51. Cheng, L.; Zheng, L.; Li, G.; Zeng, J.; Yin, Q.: Influence of particle surface properties on the dielectric behavior of silica/epoxy nanocomposites. Phys. B 403(17), 2584–2589 (2008)

    Google Scholar 

  52. Singha, S.; Thomas, M.J.: Permittivity and tan delta characteristics of epoxy nanocomposites in the frequency range of 1 MHz–1 GHz. IEEE Trans. Dielectr. Electr. Insul. 15(1), 2–11 (2008)

    Google Scholar 

Download references

Acknowledgements

No external funding was received for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khattak, A., Imran, K., Ali, A. et al. Effects of Compression and Silica Addition on the Dielectric Properties of Epoxy Composites. Arab J Sci Eng 45, 6741–6750 (2020). https://doi.org/10.1007/s13369-020-04686-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04686-1

Keywords

Navigation