Skip to main content
Log in

Experimental Study and Modeling of Concrete Containing AOD Steel Slag for Pavements

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Due to increased industrialization, large amount of industrial by-products are produced every year in all parts of the world. Disposal of these often toxic wastes is the major problem faced and can potentially be solved by their use in the construction industry. The main aim of this study was to utilize the argon oxygen decarburization (AOD) steel slag (a waste product from the stainless steel industry) in the concrete mix for construction of rigid pavements. The present study evaluated various properties of concrete mixes containing 0–25% of AOD steel slag as a partial replacement of ordinary portland cement and further curing the mixes for 28, 90, 180 and 365 days. Thus, the study investigated the compressive and flexural strengths, abrasion resistance, resistance to acid attack and resistance to sulfate attack of concrete mixes. Further, scanning electron microscope, energy-dispersive X-ray spectroscopy and toxicity characteristic leaching potential (TCLP) analyses were also conducted to study the micro-structural properties and leaching characteristics of steel slag mixed concrete. Compressive and flexural strength showed the positive results as the curing period of the specimens increased. Durability properties were less affected by the addition of AOD steel slag. TCLP analysis revealed that the toxicity of steel slag concrete was found within the permissible limits as compared to the raw steel slag. Further, to approximate the underlying relationship existing between the input–output data, a Legendre functional link neural network has been implemented for the prediction of compressive and flexural strengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Sheen, Y.-N.; Le, D.-H.; Sun, T.-H.: Innovative usages of stainless steel slags in developing self-compacting concrete. Constr. Build. Mater. 101, 268–276 (2015)

    Article  Google Scholar 

  2. Zhao, H.; Qi, Y.; Shi, Y.; Na, X.; Feng, H.: Mechanism and prevention of disintegration of aod stainless steel slag. J. Iron Steel Res. Int. 20(4), 26–30 (2013)

    Article  Google Scholar 

  3. Adegoloye, G.; Beaucour, A.-L.; Ortola, S.; Noumowé, A.: Concretes made of eaf slag and aod slag aggregates from stainless steel process: mechanical properties and durability. Constr. Build. Mater. 76, 313–321 (2015)

    Article  Google Scholar 

  4. Shen, H.; Forssberg, E.; Nordström, U.: Physicochemical and mineralogical properties of stainless steel slags oriented to metal recovery. Resour. Conserv. Recycl. 40(3), 245–271 (2004)

    Article  Google Scholar 

  5. Baciocchi, R.; Costa, G.; Polettini, A.; Pomi, R.: Influence of particle size on the carbonation of stainless steel slag for co2 storage. Energy Procedia 1(1), 4859–4866 (2009)

    Article  Google Scholar 

  6. Huaiwei, Z.; Xin, H.: An overview for the utilization of wastes from stainless steel industries. Resour. Conserv. Recycl. 55(8), 745–754 (2011)

    Article  Google Scholar 

  7. Salman, M.; Cizer, Ö.; Pontikes, Y.; Snellings, R.; Dijkman, J.; Sels, B.; Vandewalle, L.; Blanpain, B.; Van Balen, K.: Alkali activation of aod stainless steel slag under steam curing conditions. J. Am. Ceram. Soc. 98(10), 3062–3074 (2015)

    Article  Google Scholar 

  8. Koushkbaghi, M.; Kazemi, M.J.; Mosavi, H.; Mohseni, E.: Acid resistance and durability properties of steel fiber-reinforced concrete incorporating rice husk ash and recycled aggregate. Constr. Build. Mater. 202, 266–275 (2019)

    Article  Google Scholar 

  9. Chen, C.; Habert, G.; Bouzidi, Y.; Jullien, A.: Environmental impact of cement production: detail of the different processes and cement plant variability evaluation. J. Clean. Prod. 18(5), 478–485 (2010)

    Article  Google Scholar 

  10. van Deventer, J.S.; Provis, J.L.; Duxson, P.; Brice, D.G.: Chemical research and climate change as drivers in the commercial adoption of alkali activated materials. Waste Biomass Valoriz. 1(1), 145–155 (2010)

    Article  Google Scholar 

  11. Mehta, P.K.: Greening of the concrete industry for sustainable development. Concr. Int. 24(7), 23–28 (2002)

    Google Scholar 

  12. Khotbehsara, M.M.; Mohseni, E.; Yazdi, M.A.; Sarker, P.; Ranjbar, M.M.: Effect of nano-cuo and fly ash on the properties of self-compacting mortar. Constr. Build. Mater. 94, 758–766 (2015)

    Article  Google Scholar 

  13. Mohseni, E.; Ranjbar, M.M.; Yazdi, M.A.; Hosseiny, S.S.; Roshandel, E.: The effects of silicon dioxide, iron (iii) oxide and copper oxide nanomaterials on the properties of self-compacting mortar containing fly ash. Mag. Concr. Res. 67(20), 1112–1124 (2015)

    Article  Google Scholar 

  14. Elahi, A.; Basheer, P.; Nanukuttan, S.; Khan, Q.: Mechanical and durability properties of high performance concretes containing supplementary cementitious materials. Constr. Build. Mater. 24(3), 292–299 (2010)

    Article  Google Scholar 

  15. Xiang, X.; Xi, J.; Li, C.; Jiang, X.: Preparation and application of the cement-free steel slag cementitious material. Constr. Build. Mater. 114, 874–879 (2016)

    Article  Google Scholar 

  16. Autelitano, F.; Giuliani, F.: Electric arc furnace slags in cement-treated materials for road construction: mechanical and durability properties. Constr. Build. Mater. 113, 280–289 (2016)

    Article  Google Scholar 

  17. Rondi, L.; Bregoli, G.; Sorlini, S.; Cominoli, L.; Collivignarelli, C.; Plizzari, G.: Concrete with eaf steel slag as aggregate: a comprehensive technical and environmental characterisation. Compos. B Eng. 90, 195–202 (2016)

    Article  Google Scholar 

  18. Suer, P.; Lindqvist, J.-E.; Arm, M.; Frogner-Kockum, P.: Reproducing ten years of road ageing—accelerated carbonation and leaching of eaf steel slag. Sci. Total Environ. 407(18), 5110–5118 (2009)

    Article  Google Scholar 

  19. Pasetto, M.; Baldo, N.: Experimental evaluation of high performance base course and road base asphalt concrete with electric arc furnace steel slags. J. Hazard. Mater. 181(1–3), 938–948 (2010)

    Article  Google Scholar 

  20. Miraoui, M.; Zentar, R.; Abriak, N.-E.: Road material basis in dredged sediment and basic oxygen furnace steel slag. Constr. Build. Mater. 30, 309–319 (2012)

    Article  Google Scholar 

  21. Tripathi, B.; Misra, A.; Chaudhary, S.: Strength and abrasion characteristics of isf slag concrete. J. Mater. Civ. Eng. 25(11), 1611–1618 (2012)

    Article  Google Scholar 

  22. Netinger, I.; Bjegović, D.; Vrhovac, G.: Utilisation of steel slag as an aggregate in concrete. Mater. Struct. 44(9), 1565–1575 (2011)

    Article  Google Scholar 

  23. Mladenovič, A.; Mirtič, B.; Meden, A.; Serjun, V.Z.: Calcium aluminate rich secondary stainless steel slag as a supplementary cementitious material. Constr. Build. Mater. 116, 216–225 (2016)

    Article  Google Scholar 

  24. Contrafatto, L.: Recycled etna volcanic ash for cement, mortar and concrete manufacturing. Constr. Build. Mater. 151, 704–713 (2017)

    Article  Google Scholar 

  25. Kupwade-Patil, K.; Palkovic, S.D.; Bumajdad, A.; Soriano, C.; Büyüköztürk, O.: Use of silica fume and natural volcanic ash as a replacement to portland cement: micro and pore structural investigation using nmr, xrd, ftir and x-ray microtomography. Constr. Build. Mater. 158, 574–590 (2018)

    Article  Google Scholar 

  26. Mehta, A.; Siddique, R.: Strength, permeability and micro-structural characteristics of low-calcium fly ash based geopolymers. Constr. Build. Mater. 141, 325–334 (2017)

    Article  Google Scholar 

  27. I. 1989: Indian Standard 43 Grade Ordinary Portland Cement Specification-Code of Practice (1989)

  28. I. 44: Tentative Guidelines for Cement Concrete Mix Design for Pavements. New Delhi Indian Road Congress, pp. 1–16 (2008)

  29. I. 10262-2009: Concrete Mix Proportioning—Guidelines (2009)

  30. I. 516: Indian Standard Methods of Tests for Strength of Concrete (1959)

  31. Wu, H.; Huang, B.; Shu, X.; Dong, Q.: Laboratory evaluation of abrasion resistance of portland cement pervious concrete. J. Mater. Civ. Eng. 23(5), 697–702 (2010)

    Article  Google Scholar 

  32. Dong, Q.; Wu, H.; Huang, B.; Shu, X.; Wang, K.: Investigation into laboratory abrasion test methods for pervious concrete. J. Mater. Civ. Eng. 25(7), 886–892 (2012)

    Article  Google Scholar 

  33. C. ASTM, 131: Standard Test Method for Resistance to Degradation of Small

  34. U. EPA: Method 1311. Toxicity Characteristic Leaching Procedure (1992)

  35. Han, F.; Zhang, Z.; Wang, D.; Yan, P.: Hydration heat evolution and kinetics of blended cement containing steel slag at different temperatures. Thermochim. Acta 605, 43–51 (2015)

    Article  Google Scholar 

  36. Aggarwal, Y.; Siddique, R.: Microstructure and properties of concrete using bottom ash and waste foundry sand as partial replacement of fine aggregates. Constr. Build. Mater. 54, 210–223 (2014)

    Article  Google Scholar 

  37. Singh, M.; Siddique, R.: Strength properties and micro-structural properties of concrete containing coal bottom ash as partial replacement of fine aggregate. Constr. Build. Mater. 50, 246–256 (2014)

    Article  Google Scholar 

  38. Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S.: Geopolymer technology: the current state of the art. J. Mater. Sci. 42(9), 2917–2933 (2007)

    Article  Google Scholar 

  39. Khale, D.; Chaudhary, R.: Mechanism of geopolymerization and factors influencing its development: a review. J. Mater. Sci. 42(3), 729–746 (2007)

    Article  Google Scholar 

  40. Sharma, U.; Singh, L.; Zhan, B.; Poon, C.S.: Effect of particle size of nanosilica on microstructure of CSH and its impact on mechanical strength. Cem. Concr. Compos. 97, 312–321 (2019)

    Article  Google Scholar 

  41. Shi, C.; Fernandez-Jimenez, A.: Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements. J. Hazard. Mater. 137(3), 1656–1663 (2006)

    Article  Google Scholar 

  42. Kunther, W.; Ferreiro, S.; Skibsted, J.: Influence of the ca/si ratio on the compressive strength of cementitious calcium–silicate–hydrate binders. J. Mater. Chem. A 5(33), 17401–17412 (2017)

    Article  Google Scholar 

  43. Patra, J.C.; Meher, P.K.; Chakraborty, G.: Nonlinear channel equalization for wireless communication systems using legendre neural networks. Sig. Process. 89(11), 2251–2262 (2009)

    Article  Google Scholar 

Download references

Funding

This research is not funded by any agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanvi Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and Animals

This research do not involve any human and animal participants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, T., Sachdeva, S.N. Experimental Study and Modeling of Concrete Containing AOD Steel Slag for Pavements. Arab J Sci Eng 45, 8111–8127 (2020). https://doi.org/10.1007/s13369-020-04619-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04619-y

Keywords

Navigation