Skip to main content
Log in

Simultaneous Adsorption of Multi-lanthanides from Aqueous Silica Sand Solution Using Pectin–Activated Carbon Composite

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Extraction of pectin (Pec) from banana (Musa paradisiaca L.) peels, the agricultural waste of banana fruit treated in acidic condition, and its fabrication into pectin–activated carbon (Pec–AC) composite by impregnation method were investigated. This Pec–AC composite was applied as an adsorbent to simultaneously remove multi-lanthanides, namely yttrium (Y), lanthanum (La), cerium (Ce), neodymium (Nd), and samarium (Sm), which were released from an acidic silica sand aqueous solution. Various fractions of Pec in Pec–AC composite and the effects of different parameters on the adsorption capacity of the multi-lanthanides were also evaluated. At the optimum condition, the adsorption capacity of the lanthanides was 84.4, 77.7, 67.5, 57.5, and 53.7% for Y, Nd, Sm, Ce, and La, with respect to their content in the silica sand. The Qmax value was estimated to be 21.80, 27.78, 18.22, 21.09, and 24.91 mg g−1 for La3+, Y3+, Nd3+, Sm3+, and Ce3+, respectively. Fourier-transform infrared analysis suggests that the lanthanides are bound to the electronegative functional groups on the active sites of the Pec–AC composite. The simultaneous adsorption of the lanthanides on Pec–AC composite is governed by the pseudo-second-order kinetics, and the adsorption process of the lanthanides can be described by Temkin isotherm model. Overall results suggest in this study that the Pec–AC composite is an efficient potential adsorbent to simultaneously absorb multi-lanthanides from leachate of silica sand as the primary step of isolation of lanthanides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jowitt, S.M.; Medlin, C.C.; Cas, R.A.F.: The rare earth element (REE) mineralisation potential of highly fractionated rhyolites: a potential low-grade, bulk tonnage source of critical metals. Ore Geol. Rev. 86, 548–562 (2017)

    Article  Google Scholar 

  2. Iclodean, C.; Varga, B.; Burnete, N.; Cimerdean, D.; Jurchiş, B.: Comparison of different battery types for electric vehicles. IOP Conf. Ser. Mater. Sci. Eng. 252, 012058 (2017)

    Article  Google Scholar 

  3. Lin, S.L.; Huang, K.L.; Wang, I.C.; Chou, I.C.; Kuo, Y.M.; Hung, C.H.; Lin, C.: Characterization of spent nickel–metal hydride batteries and a preliminary economic evaluation of the recovery processes. J. Air Waste Manag. Assoc. 66, 296–306 (2016)

    Article  Google Scholar 

  4. Binnemans, K.; Jones, P.T.; Blanpain, B.; Gerven, T.V.; Yang, Y.-X.; Walton, A.; Buchert, M.: Recycling of rare earths: a critical review. J. Clean. Prod. 51, 1–22 (2013)

    Article  Google Scholar 

  5. Farmer, T.J.; Clark, J.H.; Hunt, A.J.: Elemental sustainability and the importance of scarce element recovery. In: Hunt, A.J. (ed.) Element Recovery and Sustainability, pp. 1–28. RSC Publishing, Cambridge (2013)

    Google Scholar 

  6. Burakova, I.V.; Burakov, A.E.; Tkachev, A.G.; Troshkina, I.D.; Veselova, O.A.; Babkin, A.V.; Aung, W.M.; Ali, I.: Kinetics of the adsorption of scandium and cerium ions in sulfuric acid solutions on a nanomodified activated carbon. J. Mol. Liq. 253, 277–283 (2018)

    Article  Google Scholar 

  7. Tanda, B.C.; Oraby, E.A.; Eksteen, J.J.: Recovery of copper from alkaline glycine leach solution using solvent extraction. Sep. Purif. Technol. 187, 389–396 (2017)

    Article  Google Scholar 

  8. Reddy, K.R.; Nakata, K.; Ochiai, T.; Murakami, T.; Tryk, D.A.; Fujishima, A.: Nanofibrous TiO2–core/conjugated polymer–sheath composites: synthesis, structural properties and photocatalytic activity. J. Nanosci. Nanotechnol. 10, 7951–7957 (2010)

    Article  Google Scholar 

  9. Reddy, K.R.; Hassan, M.; Gomes, V.G.: Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Appl. Catal. A Gen. 489, 1–16 (2015)

    Article  Google Scholar 

  10. Dharupaneedi, S.P.; Nataraj, S.K.; Nadagouda, M.; Reddy, K.R.; Shukla, S.S.; Aminabhavi, T.M.: Membrane-based separation of potential emerging pollutants. Sep. Purif. Technol. 210, 850–866 (2019)

    Article  Google Scholar 

  11. Morshed, M.N.; Bouazizi, N.; Behary, N.; Guan, J.; Nierstrasz, V.: Stabilization of zero valent iron (Fe0) on plasma/dendrimer functionalized polyester fabrics for Fenton-like removal of hazardous water pollutants. Chem. Eng. J. 374, 658–673 (2019)

    Article  Google Scholar 

  12. Zheng, M.; Han, Y.; Xu, C.; Zhang, Z.; Han, H.: Selective adsorption and bioavailability relevance of the cyclic organics in anaerobic pretreated coal pyrolysis wastewater by lignite activated coke. Sci. Total Environ. 653, 64–73 (2019)

    Article  Google Scholar 

  13. Awual, M.R.; Kobayashi, T.; Shiwaku, H.; Miyazaki, Y.; Motokawa, R.; Suzuki, S.; Okamoto, Y.; Yaita, T.: Evaluation of lanthanide sorption and their coordination mechanism by EXAFS measurement using novel hybrid adsorbent. Chem. Eng. J. 225, 558–566 (2013)

    Article  Google Scholar 

  14. Kim, J.; Benjamin, M.M.: Modeling a novel ion exchange process for arsenic and nitrate removal. Water Res. 38, 2053–2062 (2004)

    Article  Google Scholar 

  15. Koekkoek, A.J.J.; Kim, W.; Degirmenci, V.; Xin, H.; Ryoo, R.; Hensen, E.J.M.: Catalytic performance of sheet-like Fe/ZSM-5 zeolites for the selective oxidation of benzene with nitrous oxide. J. Catal. 299, 81–89 (2013)

    Article  Google Scholar 

  16. Wu, L.; Degirmenci, V.; Magusin, P.C.M.M.; Szyja, B.M.; Hensen, E.J.M.: Dual template synthesis of highly mesoporous SSZ-13 zeolite with improved stability in the methanol-to-olefins reaction. Chem. Commun. 48, 9492–9494 (2012)

    Article  Google Scholar 

  17. Hillen, L.; Degirmenci, V.: Synthesis methods for the production of hierarchically mesoporous and microporous zeolites. Rev. Adv. Sci. Eng. 4, 147–162 (2015)

    Article  Google Scholar 

  18. Degirmenci, V.; Hensen, E.J.M.: Development of a heterogeneous catalyst for lignocellulosic biomass conversion: glucose dehydration by metal chlorides in a silica-supported ionic liquid layer. Environ. Prog. Sustain. Energy 33, 657–662 (2014)

    Article  Google Scholar 

  19. Koekkoek, A.J.J.; Degirmenci, V.; Hensen, E.J.M.: Dry gel conversion of organosilane templated mesoporous silica: from amorphous to crystalline catalysts for benzene oxidation. J. Mater. Chem. 21, 9279–9289 (2011)

    Article  Google Scholar 

  20. Wilson, L.D.; Mahmud, S.T.: The adsorption properties of surface-modified mesoporous silica materials with β-cylodextrin. Int. J. Technol. 4, 533–545 (2015)

    Article  Google Scholar 

  21. Oozeerally, R.; Burnett, D.L.; Chamberlain, T.W.; Walton, R.I.; Degirmenci, V.: Exceptionally efficient and recyclable heterogeneous metal–organic framework catalyst for glucose isomerization in water. ChemCatChem 10, 706–709 (2018)

    Article  Google Scholar 

  22. Zhang, Y.; Degirmenci, V.; Li, C.; Hensen, E.J.M.: Phosphotungstic acid encapsulated in metal-organic framework as catalyst for carbohydrate dehydration to 5-hydroxymethylfurfural. Chemsuschem 4, 59–64 (2011)

    Article  Google Scholar 

  23. Iannicelli-Zubiani, E.M.; Stampino, P.G.; Cristiani, C.; Dotelli, G.: Enhanced lanthanum adsorption by amine modified activated carbon. Chem. Eng. J. 341, 75–82 (2018)

    Article  Google Scholar 

  24. Reddy, K.R.; Sin, B.C.; Ryu, K.S.; Noh, J.; Lee, Y.: In situ self-organization of carbon black-polyaniline composites from nanospheres to nanorods: synthesis, morphology, structure and electrical conductivity. Synth. Met. 159, 1934–1939 (2009)

    Article  Google Scholar 

  25. Reddy, K.R.; Reddy, C.V.; Nadagouda, M.N.; Shetti, N.P.; Jaesool, S.; Aminabhavi, T.M.: Polymeric graphitic carbon nitride (g-C3N4)-based semiconducting nanostructured materials: synthesis methods, properties and photocatalytic applications. J. Environ. Manag. 238, 25–40 (2019)

    Article  Google Scholar 

  26. Khan, M.U.; Reddy, K.R.; Snguanwongchai, T.; Haque, E.; Gomes, V.G.: Polymer brush synthesis on surface modified carbon nanotubes via in situ emulsion polymerization. Colloid Polym. Sci. 294, 1599–1610 (2016)

    Article  Google Scholar 

  27. Kumar, S.; Bukkitgar, S.D.; Singh, S.; Singh, P.V.; Reddy, K.R.; Shetti, N.P.; Reddy, C.V.; Sadhu, V.; Naveen, S.: Electrochemical sensors and biosensors based on graphene functionalized with metal oxide nanostructures for healthcare applications. Chem. Select. 4, 5322–5337 (2019)

    Google Scholar 

  28. Choi, Y.S.; Yeo, C.S.; Kim, S.J.; Lee, J.Y.; Kim, Y.; Cho, K.R.; Ju, S.; Hong, B.H.; Park, S.Y.: Multifunctional reduced graphene oxide-CVD graphene core–shell fibers. Nanoscale 11, 12637–12642 (2019)

    Article  Google Scholar 

  29. Cakici, M.; Reddy, K.R.; Alonso-Marroquin, F.: Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes. Chem. Eng. J. 309, 151–158 (2017)

    Article  Google Scholar 

  30. Shetti, N.P.; Malode, S.J.; Nayak, D.S.; Bagihalli, G.B.; Reddy, K.R.; Ravindranadh, K.; Reddy, C.V.: A novel biosensor based on graphene oxide-nanoclay hybrid electrode for the detection of Theophylline for healthcare applications. Microchem. J. 149, 103985 (2019)

    Article  Google Scholar 

  31. Shetti, N.P.; Nayak, D.S.; Malode, S.J.; Kakarla, R.R.; Shukla, S.S.; Aminabhavi, T.M.: Sensors based on ruthenium-doped TiO2 nanoparticles loaded into multi-walled carbon nanotubes for the detection of flufenamic acid and mefenamic acid. Anal. Chim. Acta 1051, 58–72 (2019)

    Article  Google Scholar 

  32. Rivera-Utrilla, J.; Sánchez-Polo, M.; Gómez-Serrano, V.; Álvarez, P.M.; Alvim-Ferraz, M.C.M.; Dias, J.M.: Activated carbon modifications to enhance its water treatment applications: an overview. J. Hazard. Mater. 187, 1–23 (2011)

    Article  Google Scholar 

  33. Zhang, Y.; Pan, K.; Zhong, Q.: Characteristics of activated carbon and carbon nanotubes as adsorbents to remove annatto (norbixin) in cheese whey. J. Agric. Food Chem. 61, 9230–9240 (2013)

    Article  Google Scholar 

  34. Ren, X.; Chen, C.; Nagatsu, M.; Wang, X.: Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem. Eng. J. 170, 395–410 (2011)

    Article  Google Scholar 

  35. Rao, G.P.; Lu, C.; Su, F.: Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep. Purif. Technol. 58, 224–231 (2007)

    Article  Google Scholar 

  36. Ren, X.; Li, J.; Tan, X.; Wang, X.: Comparative study of graphene oxide, activated carbon and carbon nanotubes as adsorbents for copper decontamination. Dalton Trans. 42, 5266–5274 (2013)

    Article  Google Scholar 

  37. Ji, L.; Chen, W.; Duan, L.; Zhu, D.: Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents. Environ. Sci. Technol. 43, 2322–2327 (2009)

    Article  Google Scholar 

  38. Czech, B.; Oleszczuk, P.: Sorption of diclofenac and naproxen onto MWCNT in model wastewater treated by H2O2 and/or UV. Chemosphere 149, 272–278 (2016)

    Article  Google Scholar 

  39. Ma, C.Y.; Huang, S.C.; Chou, P.H.; Den, W.; Hou, C.H.: Application of a multiwalled carbon nanotube-chitosan composite as an electrode in the electrosorption process for water purification. Chemosphere 146, 113–120 (2016)

    Article  Google Scholar 

  40. Esfahani, M.R.; Tyler, J.L.; Stretz, H.A.; Wells, M.J.M.: Effects of a dual nanofiller, nano-TiO2 and MWCNT for polysulfone-based nanocomposite membranes for water purification. Desalination 372, 47–56 (2015)

    Article  Google Scholar 

  41. Yang, S.; Hu, J.; Chen, C.; Shao, D.; Wang, X.: Mutual effects of Pb(II) and humic acid adsorption on multiwalled carbon nanotubes/polyacrylamide composites from aqueous solutions. Environ. Sci. Technol. 45, 3621–3627 (2011)

    Article  Google Scholar 

  42. Pyrzynska, K.: Sorption of Cd(II) onto carbon-based materials: a comparative study. Microchim. Acta 169, 7–13 (2010)

    Article  Google Scholar 

  43. Sweetman, M.; May, S.; Mebberson, N.; Pendleton, P.; Vasilev, K.; Plush, S.; Hayball, J.: Activated carbon, carbon nanotubes and graphene: materials and composites for advanced water purification. J. Carbon Res. 3, 18 (2017)

    Article  Google Scholar 

  44. Zahid, I.; Hussain, S.; Malghani, N.; Naeem, Z.; Amin, M.; Mushtaq, F.; Anwer, A.: Municipal wastewater treatment using rice husk and kikar. In: International Research Symposium on Engineering Advancements 2016, Sri Lanka, 2016, pp. 56–59

  45. Liu, D.; Zhang, W.; Lin, H.; Li, Y.; Lu, H.; Wang, Y.: A green technology for the preparation of high capacitance rice husk-based activated carbon. J. Clean. Prod. 112, 1190–1198 (2016)

    Article  Google Scholar 

  46. Kazemi, F.; Younesi, H.; Ghoreyshi, A.A.; Bahramifar, N.; Heidari, A.: Thiol-incorporated activated carbon derived from fir wood sawdust as an efficient adsorbent for the removal of mercury ion: batch and fixed-bed column studies. Process Saf. Environ. Protect. 100, 22–35 (2016)

    Article  Google Scholar 

  47. Tao, H.C.; Zhang, H.R.; Li, J.B.; Ding, W.Y.: Biomass based activated carbon obtained from sludge and sugarcane bagasse for removing lead ion from wastewater. Bioresour. Technol. 192, 611–617 (2015)

    Article  Google Scholar 

  48. Gafri, H.F.S.; Mohamed Zuki, F.; Aroua, M.K.; Hashim, N.A.: Mechanism of bacterial adhesion on ultrafiltration membrane modified by natural antimicrobial polymers (chitosan) and combination with activated carbon (PAC). Rev. Chem. Eng. 35, 421–443 (2019)

    Article  Google Scholar 

  49. Belo, C.R.; Cansado, I.P.; Mourão, P.A.M.: Synthetic polymers blend used in the production of high activated carbon for pesticides removals from liquid phase. Environ. Technol. (UK) 38, 285–296 (2017)

    Article  Google Scholar 

  50. Hokkanen, S.; Bhatnagar, A.; Sillanpaa, M.: A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res. 91, 156–173 (2016)

    Article  Google Scholar 

  51. Wong, W.W.; Abbas, F.M.A.; Liong, M.T.; Azhar, M.E.: Modification of durian rind pectin for improved biosorbent ability. Int. Food Res. J. 15, 363–365 (2008)

    Google Scholar 

  52. Carpenter, A.W.; de Lannoy, C.F.; Wiesner, M.R.: Cellulose nanomaterials in water treatment technologies. Environ. Sci. Technol. 49, 5277–5287 (2015)

    Article  Google Scholar 

  53. de Azevedo, A.C.N.; Vaz, M.G.; Gomes, R.F.; Pereira, A.G.B.; Fajardo, A.R.; Rodrigues, F.H.A.: Starch/rice husk ash based superabsorbent composite: high methylene blue removal efficiency. Iran. Polym. J. 26, 93–105 (2017)

    Article  Google Scholar 

  54. Barakat, M.A.: New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 4, 361–377 (2011)

    Article  Google Scholar 

  55. Malik, A.H.; Iyer, P.K.: Conjugated polyelectrolyte based sensitive detection and removal of antibiotics tetracycline from water. ACS Appl. Mater. Interface. 9, 4433–4439 (2017)

    Article  Google Scholar 

  56. Luo, X.G.; Zeng, J.; Liu, S.L.; Zhang, L.N.: An effective and recyclable adsorbent for the removal of heavy metal ions from aqueous system: magnetic chitosan/cellulose microspheres. Bioresour. Technol. 194, 403–406 (2015)

    Article  Google Scholar 

  57. Opanasopit, P.; Apirakaramwong, A.; Ngawhirunpat, T.; Rojanarata, T.; Ruktanonchai, U.: Development and characterization of pectinate micro/nanoparticles for gene delivery. AAPS PharmSciTech 9, 67–74 (2008)

    Article  Google Scholar 

  58. Kusrini, E.; Wicaksono, W.; Gunawan, C.; Daud, N.Z.A.; Usman, A.: Kinetics, mechanism, and thermodynamics of lanthanum adsorption on pectin extracted from durian rind. J. Environ. Chem. Eng. 6, 6580–6588 (2018)

    Article  Google Scholar 

  59. Mahesh, M.; Arivizhivendhan, K.V.; Maharaja, P.; Boopathy, R.; Hamsavathani, V.; Sekaran, G.: Production, purification and immobilization of pectinase from Aspergillus ibericus onto functionalized nanoporous activated carbon (FNAC) and its application on treatment of pectin containing wastewater. J. Mol. Catal. B Enzym. 133, 43–54 (2016)

    Article  Google Scholar 

  60. Farahnaky, A.; Sharifi, S.; Imani, B.; Dorodmand, M.M.; Majzoobi, M.: Physicochemical and mechanical properties of pectin–carbon nanotubes films produced by chemical bonding. Food Packag. Shelf Life 16, 8–14 (2018)

    Article  Google Scholar 

  61. Wu, F.-C.; Tseng, R.-L.; Juang, R.-S.: Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem. Eng. J. 150, 366–373 (2009)

    Article  Google Scholar 

  62. Weber, W.J.; Morris, J.C.: Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 89, 31–60 (1963)

    Google Scholar 

  63. Boyd, G.E.; Adamson, A.W.; Myers Jr., L.S.: The exchange adsorption of ions from aqueous solutions by organic zeolites; II kinetics. J. Am. Chem. Soc. 69, 2836–2848 (1947)

    Article  Google Scholar 

  64. Zaidi, N.A.H.M.; Lim, L.B.L.; Priyantha, N.; Usman, A.: Artocarpus odoratissimus leaves as an eco-friendly adsorbent for the removal of toxic rhodamine B dye in aqueous solution: equilibrium isotherm, kinetics, thermodynamics and regeneration studies. Arabian J. Sci. Eng. 43, 6011–6020 (2018)

    Article  Google Scholar 

  65. Foo, K.Y.; Hameed, B.H.: Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156, 2–10 (2010)

    Article  Google Scholar 

  66. Zaidi, N.A.H.M.; Lim, L.B.L.; Usman, A.; Kooh, M.R.R.: Efficient adsorption of malachite green dye using Artocarpus odoratissimus leaves with artificial neural network modelling. Desalin. Water Treat. 101, 313–324 (2018)

    Article  Google Scholar 

  67. Wehr, J.B.; Blamey, F.P.C.; Kopittke, P.M.; Menzies, N.W.: Comparative hydrolysis and sorption of Al and La onto plant cell wall material and pectic materials. Plant Soil 332, 319–330 (2010)

    Article  Google Scholar 

  68. Oliveira, R.C.; Hammer, P.; Guibal, E.; Taulemesse, J.M.; Garcia Jr., O.: Characterization of metal–biomass interactions in the lanthanum(III) biosorption on Sargassum sp. using SEM/EDX, FTIR, and XPS: preliminary studies. Chem. Eng. J. 239, 381–391 (2014)

    Article  Google Scholar 

  69. Marwani, H.M.; Albishri, H.M.; Jalal, T.A.; Soliman, E.M.: Study of isotherm and kinetic models of lanthanum adsorption on activated carbon loaded with recently synthesized Schiff’s base. Arab. J. Chem. 10, S1032–S1040 (2017)

    Article  Google Scholar 

  70. Chen, Q.: Study on the adsorption of lanthanum(III) from aqueous solution by bamboo charcoal. J. Rare Earths 28, 125–131 (2010)

    Article  Google Scholar 

  71. Lahiji, M.N.; Keshtkar, A.R.; Moosavian, M.A.: Adsorption of cerium and lanthanum from aqueous solutions by chitosan/polyvinyl alcohol/3-mercaptopropyltrimethoxy-silane beads in batch and fixed-bed systems. Part. Sci. Technol. 36, 340–350 (2016)

    Article  Google Scholar 

  72. Ashour, R.M.; Abdel-khalek, A.A.; Ali, M.M.; Abdel-Magied, A.F.: Adsorption of La3+ and Gd3+ using magnetic iron oxide nanoparticles: mechanistic and kinetic study. Chem. Chem. Technol. 11, 101–108 (2016)

    Google Scholar 

  73. Koochaki-Mohammadpour, S.M.A.; Torab-Mostaedi, M.; Talebizadeh-Rafsanjani, A.; Naderi-Behdani, F.: Adsorption isotherm, kinetic, thermodynamic, and desorption studies of lanthanum and dysprosium on oxidized multiwalled carbon nanotubes. J. Dispers. Sci. Technol. 35, 244–254 (2014)

    Article  Google Scholar 

  74. Hamadneh, I.; Alatawi, A.; Zalloum, R.; Albuqain, R.; Alsotari, S.; Khalili, F.I.; Al-Dujaili, A.H.: Comparison of Jordanian and standard diatomaceous earth as an adsorbent for removal of Sm(III) and Nd(III) from aqueous solution. Environ. Sci. Pollut. Res. 26, 20969–20980 (2019)

    Article  Google Scholar 

  75. Behdani, F.N.; Rafsanjani, A.T.; Torab-Mostaedi, M.; Mohammadpour, S.M.A.K.: Adsorption ability of oxidized multiwalled carbon nanotubes towards aqueous Ce(III) and Sm(III). Korean J. Chem. Eng. 30, 448–455 (2013)

    Article  Google Scholar 

  76. Zhang, L.; Ding, S.D.; Yang, T.; Zheng, G.C.: Adsorption behavior of rare earth elements using polyethyleneglycol (phosphomolybdate and tungstate) heteropolyacid sorbents in nitric solution. Hydrometallurgy 99, 109–114 (2009)

    Article  Google Scholar 

  77. Galhoum, A.A.; Mahfouz, M.G.; Abdel-Rehem, S.T.; Gomaa, N.A.; Atia, A.A.; Vincent, T.; Guibal, E.: Diethylenetriamine-functionalized chitosan magnetic nano-based particles for the sorption of rare earth metal ions [Nd(III), Dy(III) and Yb(III)]. Cellulose 22, 2589–2605 (2015)

    Article  Google Scholar 

  78. Hadjittofi, L.; Charalambous, S.; Pashalidis, I.: Removal of trivalent samarium from aqueous solutions by activated biochar derived from cactus fibres. J. Rare Earths 34, 99–104 (2016)

    Article  Google Scholar 

  79. Sappidi, P.; Boda, A.; Ali, S.M.; Singh, J.K.: Adsorption of gadolinium (Gd3+) ions on the dibenzo crown ether (DBCE) and dicyclo hexano crown ether (DCHCE) grafted on the polystyrene surface: insights from all atom molecular dynamics simulations and experiments. J. Phys. Chem. C 123, 12276–12285 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the Ministry of Research, Technology, and Higher Education of the Republic of Indonesia (RISTEKDIKTI) for research grant award through PTUPT Grant No. NKB-1734/UN2.R3.1/HKP.05.00/2019 to E.K.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eny Kusrini or Anwar Usman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusrini, E., Alhamid, M.I., Widiantoro, A.B. et al. Simultaneous Adsorption of Multi-lanthanides from Aqueous Silica Sand Solution Using Pectin–Activated Carbon Composite. Arab J Sci Eng 45, 7219–7230 (2020). https://doi.org/10.1007/s13369-020-04386-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04386-w

Keywords

Navigation