Skip to main content

Advertisement

Log in

Potential of Nanotechnology for Rural Applications

  • Review-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Nearly half of the global populations live in rural area. For the developing country like India, this figure is nearly 70% of the mass population. Currently, major challenges faced by the rural community are lack of clean water, food, good health, energy, stable economy and environment. Nanotechnology and nanoscale materials have the potential for the solutions of many significant challenges faced by our society. This review paper summarized some of the most promising and important nanotechnology applications in agriculture and food, clean water, energy, environment, human health and other consumer products. The review has been concluded with the potential risks of nanomaterials, technical and financial challenges for the implementation of nanotechnology in the rural community developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Sastry, R.K.; Rashmi, H.B.; Rao, N.H.; Ilyas, S.M.: Integrating nanotechnology into agri-food systems research in India: a conceptual framework. Technol. Forecast. Soc. Chang. 77(4), 639–648 (2010)

    Google Scholar 

  2. Mu, L.; Sprando, R.L.: Application of nanotechnology in cosmetics. Pharm. Res. 27(8), 1746–1749 (2010)

    Google Scholar 

  3. Gülümser, A.; Baycan-Levent, T.; Nijkam, P.: Measuring regional creative capacity: a literature review for rural-specific approaches. Eur. Plan. Stud. 18(4), 545–563 (2010)

    Google Scholar 

  4. Sastry, R.K.; Rashmi, H.B.; Rao, N.H.: Nanotechnology for enhancing food security in India. Food Policy 36(3), 391–400 (2011)

    Google Scholar 

  5. Handford, C.E.; Daen, M.; Spence, M.; Henchion, M.; Elliott, C.T.; Campbell, K.: Awareness and attitudes towards the emerging use of nanotechnology in the agri-food sector. Food Control 57, 24–34 (2015)

    Google Scholar 

  6. Gupta, N.; Fischer, A.R.H.; George, S.; Frewer, L.J.: Socio-psychological determinants of public acceptance of technologies: a review. Public Understand. Sci. 21(7), 782–795 (2012)

    Google Scholar 

  7. Helal, N.A.S.: Nanotechnology in agriculture: a review. Agric. For. 59(1), 117–142 (2013)

    Google Scholar 

  8. Roco, M.C.; Harthorn, B.; Guston, D.; Shapira, P.: Innovative and responsible governance of nanotechnology for societal development. J. Nanopart. Res. 13(9), 3557–3590 (2011)

    Google Scholar 

  9. Mitter, N.; Hussey, K.: Moving policy and regulation forward for nanotechnology applications in agriculture. Nat. Nanotechnol. 14(6), 508–510 (2019)

    Google Scholar 

  10. Kumar, A.; Gupta, K.; Dixit, S.; Mishra, K.; Srivastava, S.: A review on positive and negative impacts of nanotechnology in agriculture. Int. J. Environ. Sci. Technol. Rev. 16(4), 2175–2184 (2019)

    Google Scholar 

  11. He, X.J.; Deng, H.; Hwang, H.M.: The current application of nanotechnology in food and agriculture. J. Food Drug Anal. 27(1), 1–21 (2019)

    Google Scholar 

  12. Roosen, J.; Bieberstein, A.; Blanchemanche, S.; Goddard, E.; Marette, S.; Vandermoere, F.: Trust and willingness to pay for nanotechnology food. Food Policy 52, 75–83 (2015)

    Google Scholar 

  13. Hannah, W.; Thompson, P.B.: Nanotechnology, risk and the environment: a review. J. Environ. Monit. 10(3), 291–300 (2008)

    Google Scholar 

  14. Felekis, T.A.; Katsaros, N.: Environment and nanotechnology: a promising challenge. J. Environ. Protect. Ecol. 10(4), 1146–1154 (2009)

    Google Scholar 

  15. Dan, G.; Guoxin, X.; Jianbin, L.: Mechanical properties of nanoparticles: basics and applications. J. Phys. D Appl. Phys. 47(1), 013001 (2014)

    Google Scholar 

  16. Murty, B.S.; Shankar, P.; Raj, B.; Rath, B.B.; Murday, J.: “Unique Properties of Nanomaterials, pp. 29–65. Textbook of Nanoscience and Nanotechnology, Springer, Berlin (2012)

    Google Scholar 

  17. Khan, I.; Saeed, K.; Khan, I.: Nanoparticles: properties, applications and toxicities. Arab. J. Chem. 12(7), 908–931 (2019)

    Google Scholar 

  18. Alexandre, M.; Dubois, P.: Chapter 8: Organic-matrix-based nanocomposites. In: Wautelet, M. et al. (ed.) Nanotechnologies. The Institute of Engineering and Technology, London (2009)

    Google Scholar 

  19. Tiwari, J.N.; Tiwari, R.N.; Kim, K.S.: Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater Sci. 57(4), 724–803 (2012)

    Google Scholar 

  20. Kumar, P.; Kim, K.-H.; Bansal, V.; Kumar, P.: Nanostructured materials: a progressive assessment and future direction for energy device applications. Coord. Chem. Rev. 353, 113–141 (2017)

    Google Scholar 

  21. Ginzburg, B.M.; Tuichiev, S.: Structuring of aromatic solvents in the presence of small amounts of fullerence C-60. Russ. J. Appl. Chem. 81(4), 618–622 (2008)

    Google Scholar 

  22. Hayashi, T.; Kohno, H.: Diameter-modulated multi-walled carbon nanotubes without bamboo-like partitions: growth, structure and deformation behaviors. J. Nanosci. Nanotechnol. 20(5), 3038–3041 (2020)

  23. Stawarz, S.; Witek, N.; Kucharczyk, W.; Bakar, M.; Stawarz, M.: Thermo-protective properties of polymer composites with nano-titanium dioxide. Int. J. Mech. Mater. Des. 15(3), 585–599 (2019)

    Google Scholar 

  24. Zhang, R.; Wang, Y.H.; Ma, D.H.; Ahmed, S.; Qin, W.; Liu, Y.W.: Effects of ultrasonication duration and graphene oxide and nano-zinc oxide contents on the properties of polyvinyl alcohol nanocomposites. Ultrason. Sonochem. 59, 104731 (2019)

    Google Scholar 

  25. Setoodeh, A.R.; Badjian, H.: Mechanical behavior enhancement of defective graphene sheet employing boron nitride coating via atomistic study. Mater. Res. Exp. 4(12), 125019 (2017)

    Google Scholar 

  26. Badjian, H.; Setoodeh, A.R.: Improved tensile and buckling behavior of defected carbon nanotubes utilizing boron nitride coating—a molecular dynamic study. Physica B-Condensed Matter 507, 156–163 (2017)

    Google Scholar 

  27. Li, J.; Zhang, J.Z.: Optical properties and applications of hybrid semiconductor nanomaterials. Coord. Chem. Rev. 253(23–24), 3015–3041 (2009)

    Google Scholar 

  28. Figovsky, O.; Beilin, D.; Blank, N.: Advanced environment friendly nanotechnologies. In: Magarshak, Y., Kozyrev, S., Vaseashta, A.K. (eds.) Silicon Versus Carbon, pp. 19–29. NATO Science for Peace and Security Series B—Physics and Biophysics. Springer, The Netherland (2009)

    Google Scholar 

  29. Yalcin, B.; Otles, S.: Working principle, mechanism and lift effectiveness of nanobiosensors. Adv. Biosens. Bioelectron. 3, 7–14 (2014)

    Google Scholar 

  30. Iqbal, P.; Preece, J.A.; Mendes, P.M.: Nanotechnology: the “top-down” and “bottom-up” approaches. In: Steed, J.W., Atwood, J.L. (eds.) Supramolecular Chemistry. Wiley, Hoboken (2012)

    Google Scholar 

  31. Wang, Y.; Xia, Y.: Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett. 4(10), 2047–2050 (2004)

    Google Scholar 

  32. Pattekari, P.; Zheng, Z.; Zhang, X.; Levchenko, T.; Torchilin, V.; Lvov, Y.: Top-down and bottom-up approaches in production of aqueous nanocolloids of low solubility drug paclitaxel. Phys. Chem. Chem. Phys. 13(19), 9014–9019 (2011)

    Google Scholar 

  33. Byrappa, K.; Adschiri, T.: Hydrothermal technology for nanotechnology. Prog. Cryst. Growth Charact. Mater. 53(2), 117–166 (2007)

    Google Scholar 

  34. Chi, D.; et al.: Fully understanding the positive roles of plasmonic nanoparticles in ameliorating the efficiency of organic solar cells. Nanoscale 7(37), 15251–15257 (2015)

    Google Scholar 

  35. Jaiswal, M.; Dudhe, R.; Sharma, P.K.: Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech 5(2), 123–127 (2015)

    Google Scholar 

  36. Grzelczak, M.; Vermant, J.; Furst, E.M.; Liz-Marzán, L.M.: Directed self-assembly of nanoparticles. ACS Nano 4(7), 3591–3605 (2010)

    Google Scholar 

  37. Lim, K.S.; Lee, D.Y.; Valencia, G.M.; Won, Y.-W.; Bull, D.A.: Nano-self-assembly of nucleic acids capable of transfection without a gene carrier. Adv. Func. Mater. 25(34), 5445–5451 (2015)

    Google Scholar 

  38. Thorkelsson, K.; Bai, P.; Xu, T.: Self-assembly and applications of anisotropic nanomaterials: a review. Nano Today 10(1), 48–66 (2015)

    Google Scholar 

  39. Fathi, M.; Martín, Á.; McClements, D.J.: Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends Food Sci. Technol. 39(1), 18–39 (2014)

    Google Scholar 

  40. Gutiérrez, F.J.; et al.: Methods for the nanoencapsulation of β-carotene in the food sector. Trends Food Sci. Technol. 32(2), 73–83 (2013)

    MathSciNet  Google Scholar 

  41. Yawson, R.M.; Kuzma, J.: Evidence review and experts’ opinion on consumer acceptance of agrifood nanotechnology. In: International Conference on Food and Agricultural Applications of Nanotechnologies, Sao Carlos, Brazil, in June 20–25 (2010)

  42. Chaudhry, Q.; Castle, L.: Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries. Trends Food Sci. Technol. 22(11), 595–603 (2011)

    Google Scholar 

  43. Kumari, A.; Yadav, S.K.: Nanotechnology in agri-food sector. Crit. Rev. Food Sci. Nutr. 54(8), 975–984 (2014)

    Google Scholar 

  44. Ghormade, V.; Deshpande, M.V.; Paknikar, K.M.: Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv. 29(6), 792–803 (2011)

    Google Scholar 

  45. De Cesare, F.; Di Mattia, E.; Macagnano, A.: Fishing bacteria with a nanonet. Mater. Today 20(5), 284–285 (2017)

    Google Scholar 

  46. DeRosa, M.C.; Monreal, C.; Schnitzer, M.; Walsh, R.; Sultan, Y.: Nanotechnology in fertilizers. Nat. Nanotechnol. 5(2), 91 (2010)

    Google Scholar 

  47. Zulfiqar, F.; Navarro, M.; Ashraf, M.; Akram, N.A.; Munne-Bosch, S.: Nanofertilizer use for sustainable agriculture: advantages and limitations. Plant Sci. 289, 110270 (2019)

    Google Scholar 

  48. Chen, H.D.; Yada, R.: Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci. Technol. 22(11), 585–594 (2011)

    Google Scholar 

  49. Manikandan, A.; Subramanian, K.S.: Fabrication and characterisation of nanoporous zeolite based N fertilizer. Afr. J. Agric. Res. 9, 276–284 (2014)

    Google Scholar 

  50. Rai, M.; Ingle, A.: Role of nanotechnology in agriculture with special reference to management of insect pests. Appl. Microbiol. Biotechnol. 94(2), 287–293 (2012)

    Google Scholar 

  51. Atta, S.; et al.: Nano-pesticide formulation based on fluorescent organic photoresponsive nanoparticles: for controlled release of 2,4-D and real time monitoring of morphological changes induced by 2,4-D in plant systems. RSC Adv. 5(106), 86990–86996 (2015)

    Google Scholar 

  52. Kumar, S.; Nehra, M.; Dilbaghi, N.; Marrazza, G.; Hassan, A.A.; Kim, K.H.: Nano-based smart pesticide formulations: emerging opportunities for agriculture. J. Controlled Release 294, 131–153 (2019)

    Google Scholar 

  53. Perez-de-Luque, A.; Rubiales, D.: Nanotechnology for parasitic plant control. Pest Manag. Sci. 65(5), 540–545 (2009)

    Google Scholar 

  54. Boehm, A.L.; Martinon, I.; Zerrouk, R.; Rump, E.; Fessi, H.: Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J. Microencapsul. 20(4), 433–441 (2003)

    Google Scholar 

  55. Gupta, N.; Fischer, A.R.H.; Frewer, L.J.: Ethics, risk and benefits associated with different applications of nanotechnology: a comparison of expert and consumer perceptions of drivers of societal acceptance. Nanoethics 9, 93–108 (2015)

    Google Scholar 

  56. de Oliveira, J.L.; Campos, E.V.R.; Bakshi, M.; Abhilash, P.C.; Fraceto, L.F.: Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol. Adv. 32(8), 1550–1561 (2014)

    Google Scholar 

  57. Chen, X.-J.; Xu, H.-H.; Yang, W.; Liu, S.-Z.: Research on the effect of photoprotectants on photostabilization of rotenone. J. Photochem. Photobiol. B 95(2), 93–100 (2009)

    Google Scholar 

  58. Burt, S.A.; Vlielander, R.; Haagsman, H.P.; Veldhuizen, E.J.A.: Increase in activity of essential oil components carvacrol and thymol against Escherichia coli O157: h7 by addition of food stabilizers. J. Food Prot. 68(5), 919–926 (2005)

    Google Scholar 

  59. Wattanasatcha, A.; Rengpipat, S.; Wanichwecharungruang, S.: Thymol nanospheres as an effective anti-bacterial agent. Int. J. Pharm. 434(1–2), 360–365 (2012)

    Google Scholar 

  60. Amiri, A.; Dugas, R.; Pichot, A.L.; Bompeix, G.: In vitro and in vitro activity of eugenol oil (Eugenia caryophylata) against four important postharvest apple pathogens. Int. J. Food Microbiol. 126(1–2), 13–19 (2008)

    Google Scholar 

  61. Irving, G.R.B.; Karmokar, A.; Berry, D.R.; Brown, K.; Steward, W.P.: Curcumin: the potential for efficacy in gastrointestinal diseases. Best Pract. Res. Clin. Gastroenterol. 25(4–5), 519–534 (2011)

    Google Scholar 

  62. Sekhon, B.S.: Nanotechnology in agri-food production: an overview. Nanotechnol. Sci. Appl. 7, 31–53 (2014)

    MathSciNet  Google Scholar 

  63. Yang, F.-L.; Li, X.-G.; Zhu, F.; Lei, C.-L.: Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: tenebrionidae). J. Agric. Food Chem. 57(21), 10156–10162 (2009)

    Google Scholar 

  64. Park, H.-J.; Kim, S.H.; Kim, H.J.; Choi, S.-H.: A new composition of nanosized silica-silver for control of various plantdiseases. Plant Pathol. J. 22(3), 295–302 (2006)

    Google Scholar 

  65. Nemati, A.; Shadpour, S.; Khalafbeygi, H.; Ashraf, S.; Barkhi, M.; Soudi, M.R.: Efficiency of hydrothermal synthesis of nano/microsized copper and study on in vitro antifungal activity. Mater. Manuf. Processes 30(1), 63–69 (2015)

    Google Scholar 

  66. Stadler, T.; Buteler, M.; Weaver, D.K.: Novel use of nanostructured alumina as an insecticide. Pest Manag. Sci. 66(6), 577–579 (2010)

    Google Scholar 

  67. Elek, N.; Hoffman, R.; Raviv, U.; Resh, R.; Ishaaya, I.; Magdassi, S.: Novaluron nanoparticles: formation and potential use in controlling agricultural insect pests. Colloids Surfaces a-Physicochem. Eng. Asp. 372(1–3), 66–72 (2010)

    Google Scholar 

  68. Goswami, A.; Roy, I.; Sengupta, S.; Debnath, N.: Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519(3), 1252–1257 (2010)

    Google Scholar 

  69. Kah, M.; Beulke, S.; Tiede, K.; Hofmann, T.: Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit. Rev. Environ. Sci. Technol. 43(16), 1823–1867 (2013)

    Google Scholar 

  70. Cioffi, N.; et al.: Antifungal activity of polymer-based copper nanocomposite coatings. Appl. Phys. Lett. 85(12), 2417–2419 (2004)

    Google Scholar 

  71. Lamsal, K.; Kim, S.-W.; Jung, J.H.; Kim, Y.S.; Kim, K.S.; Lee, Y.S.: Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39(1), 26–32 (2011)

    Google Scholar 

  72. Rao, K.J.; Paria, S.: Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens. RSC Adv. 3(26), 10471–10478 (2013)

    Google Scholar 

  73. Bhagat, D.; Samanta, S.K.; Bhattacharya, S.: Efficient management of fruit pests by pheromone nanogels. Sci. Rep. 3, 1294 (2013)

    Google Scholar 

  74. Sharma, H.; Mutharasan, R.: Review of biosensors for foodborne pathogens and toxins. Sens. Actuat. B 183, 535–549 (2013)

    Google Scholar 

  75. Baruah, S.; Dutta, J.: Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ. Chem. Lett. 7(3), 191–204 (2009)

    Google Scholar 

  76. Rawtani, D.; Khatri, N.; Tyagi, S.; Pandey, G.: Nanotechnology-based recent approaches for sensing and remediation of pesticides. J. Environ. Manag. 206, 749–762 (2018)

    Google Scholar 

  77. Miyazaki, C.M.; Shimizu, F.M.; Ferreira, M.: 6—surface plasmon resonance (SPR) for sensors and biosensors. In: Da Róz, A.L., Ferreira, M., de Lima Leite, F., Oliveira, O.N. (eds.) Nanocharacterization Techniques, pp. 183–200. William Andrew Publishing, Amsterdam (2017)

    Google Scholar 

  78. Jackson, T.; Mansfield, K.; Saafi, M.; Colman, T.; Romine, P.: Measuring soil temperature and moisture using wireless MEMS sensors. Measurement 41(4), 381–390 (2008)

    Google Scholar 

  79. Pilolli, R.; Monaci, L.; Visconti, A.: Advances in biosensor development based on integrating nanotechnology and applied to food-allergen management. Trac-Trends Anal. Chem. 47, 12–26 (2013)

    Google Scholar 

  80. De Stefano, L.; Moretti, L.; Rendina, I.; Rotiroti, L.: Pesticides detection in water and humic solutions using porous silicon technology. Sens. Actuat. B-Chem. 111, 522–525 (2005)

    Google Scholar 

  81. Grieshaber, D.; MacKenzie, R.; Voros, J.; Reimhult, E.: Electrochemical biosensors—sensor principles and architectures. Sensors 8(3), 1400–1458 (2008)

    Google Scholar 

  82. Hammond, J.L.; Formisano, N.; Estrela, P.; Carrara, S.; Tkac, J.: Electrochemical biosensors and nanobiosensors. In: Estrela, P. (ed.) Biosensor Technologies for Detection of Biomolecules, pp. 69–80. Essays in Biochemistry, vol. 60, no. 1. Portland Press, London (2016)

    Google Scholar 

  83. Kimmel, D.W.; LeBlanc, G.; Meschievitz, M.E.; Cliffel, D.E.: Electrochemical sensors and biosensors. Anal. Chem. 84(2), 685–707 (2012)

    Google Scholar 

  84. Srivastava, A.K.; Dev, A.; Karmakar, S.: Nanosensors and nanobiosensors in food and agriculture. Environ. Chem. Lett. 16(1), 161–182 (2018) (and references therein)

    Google Scholar 

  85. Kaushal, M.; Wani, S.P.: Nanosensors: frontiers in precision agriculture. In: Prasad, R., Kumar, M., Kumar, V. (eds.) Nanotechnology: An Agricultural Paradigm, pp. 279–291. Springer, Singapore (2017)

    Google Scholar 

  86. Mura, S.; Carta, D.; Roggero, P.P.; Cheli, F.; Greppi, G.F.: Nanotechnology and its applications in food and animal science. Ital. J. Food Sci. 26(1), 91–102 (2014)

    Google Scholar 

  87. Handford, C.E.; Dean, M.; Henchion, M.; Spence, M.; Elliott, C.T.; Campbell, K.: Implications of nanotechnology for the agri-food industry: opportunities, benefits and risks. Trends Food Sci. Technol. 40(2), 226–241 (2014) (and references therein)

    Google Scholar 

  88. Huang, S.W.; Wang, L.; Liu, L.M.; Hou, Y.X.; Li, L.: Nanotechnology in agriculture, livestock, and aquaculture in China. A review. Agron. Sustain. Dev. 35(2), 369–400 (2015)

    Google Scholar 

  89. Cai, S.J.; Wu, C.X.; Gong, L.M.; Song, T.; Wu, H.; Zhang, L.Y.: Effects of nano-selenium on performance, meat quality, immune function, oxidation resistance, and tissue selenium content in broilers. Poult. Sci. 91(10), 2532–2539 (2012)

    Google Scholar 

  90. Barik, T.K.; Sahu, B.; Swain, V.: Nanosilica—from medicine to pest control. Parasitol. Res. 103(2), 253–258 (2008)

    Google Scholar 

  91. Shi, Y.H.; Xu, Z.R.; Feng, J.L.; Wang, C.Z.: Efficacy of modified montmorillonite nanocomposite to reduce the toxicity of aflatoxin in broiler chicks. Anim. Feed Sci. Technol. 129(1–2), 138–148 (2006)

    Google Scholar 

  92. Rather, M.A.; Sharma, R.; Aklakur, M.; Ahmad, S.; Kumar, N.; Khan, M.; Ramya, V.L.: Nanotechnology: a novel tool for aquaculture and fisheries development a prospective mini-review. Fish. Aquac. J. 16, 3 (2011)

    Google Scholar 

  93. Zhou, X.X.; Wang, Y.B.; Gu, Q.; Li, W.F.: Effects of different dietary selenium sources (selenium nanoparticle and selenomethionine) on growth performance, muscle composition and glutathione peroxidase enzyme activity of crucian carp (Carassius auratus gibelio). Aquaculture 291(1–2), 78–81 (2009)

    Google Scholar 

  94. Kumar, S.R.; Ahmed, V.P.I.; Parameswaran, V.; Sudhakaran, R.; Babu, V.S.; Hameed, A.S.S.: Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in Asian sea bass (Lates calcarifer) to protect from Vibrio (Listonella) anguillarum. Fish Shellfish Immunol. 25(1–2), 47–56 (2008)

    Google Scholar 

  95. Rajeshkumar, S.; et al.: Oral delivery of DNA construct using chitosan nanoparticles to protect the shrimp from white spot syndrome virus (WSSV). Fish Shellfish Immunol. 26(3), 429–437 (2009)

    Google Scholar 

  96. Li, L.; Lin, S.L.; Deng, L.; Liu, Z.G.: Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in black seabream Acanthopagrus schlegelii Bleeker to protect from Vibrio parahaemolyticus. J. Fish Dis. 36(12), 987–995 (2013)

    Google Scholar 

  97. te Kulve, H.; Konrad, K.; Palavicino, C.A.; Walhout, B.: Context matters: promises and concerns regarding nanotechnologies for water and food applications. Nanoethics 7(1), 17–27 (2013)

    Google Scholar 

  98. Brown, J.; Fatehi, L.; Kuzma, J.: Altruism and skepticism in public attitudes toward food nanotechnologies. J. Nanopart. Res. 17(3), 122 (2015)

    Google Scholar 

  99. Rossi, M.; et al.: Scientific basis of nanotechnology, implications for the food sector and future trends. Trends Food Sci. Technol. 40(2), 127–148 (2014)

    Google Scholar 

  100. Sastry, R.K.; Anshul, S.; Rao, N.H.: Nanotechnology in food processing sector-An assessment of emerging trends. J. Food Sci. Technol.-Mysore 50(5), 831–841 (2013)

    Google Scholar 

  101. Chaudhry, Q.; et al.: Applications and implications of nanotechnologies for the food sector. Food Addit. Contam. Part A-Chem. Anal. Control Exposure Risk Assess. 25(3), 241–258 (2008)

    Google Scholar 

  102. Momin, J.K.; Jayakumar, C.; Prajapati, J.B.: Potential of nanotechnology in functional foods. Emir. J. Food Agric. 25(1), 10–19 (2013)

    Google Scholar 

  103. Neethirajan, S.; Jayas, D.S.: Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol. 4(1), 39–47 (2011)

    Google Scholar 

  104. Dasgupta, N.; Ranjan, S.; Mundekkad, D.; Ramalingam, C.; Shanker, R.; Kumar, A.: Nanotechnology in agro-food: from field to plate. Food Res. Int. 69, 381–400 (2015)

    Google Scholar 

  105. Duran, N.; Marcato, P.D.: Nanobiotechnology perspectives. Role of nanotechnology in the food industry: a review. Int. J. Food Sci. Technol. 48(6), 1127–1134 (2013)

    Google Scholar 

  106. Gruere, G.P.: Implications of nanotechnology growth in food and agriculture in OECD countries. Food Policy 37(2), 191–198 (2012)

    Google Scholar 

  107. Lopes, C.M.; Fernandes, J.R.; Martins-Lopes, P.: Application of nanotechnology in the agro-food sector. Food Technol. Biotechnol. 51(2), 183–197 (2013)

    Google Scholar 

  108. Lopez-Vazquez, E.; Brunner, T.A.; Siegrist, M.: Perceived risks and benefits of nanotechnology applied to the food and packaging sector in Mexico. Br. Food J. 114(2–3), 197–205 (2012)

    Google Scholar 

  109. Lu, J.; Bowles, M.: Improving the food safety in supply chain: the value of nanotechnology on a growing problem. Quality Assur. Saf. Crops Foods 6(2), 123–133 (2014)

    Google Scholar 

  110. Sozer, N.; Kokini, J.L.: Nanotechnology and its applications in the food sector. Trends Biotechnol. 27(2), 82–89 (2009)

    Google Scholar 

  111. Suran, M.: A little hard to swallow? The use of nanotechnology in the food industry might be both boon and bane to human health. EMBO Rep. 15(6), 638–641 (2014)

    Google Scholar 

  112. Garcia, M.; Forbe, T.; Gonzalez, E.: Potential applications of nanotechnology in the agro-food sector. Ciencia E Tecnologia De Alimentos 30(3), 573–581 (2010)

    Google Scholar 

  113. Imran, M.; et al.: Active food packaging evolution: transformation from micro- to nanotechnology. Crit. Rev. Food Sci. Nutr. 50(9), 799–821 (2010)

    Google Scholar 

  114. Sanguansri, P.; Augustin, M.A.: Nanoscale materials development—a food industry perspective. Trends Food Sci. Technol. 17(10), 547–556 (2006)

    Google Scholar 

  115. Decker, K.J.: Wonder waters: fortified and flavoured waters. Food Product Design 13(5), 57–74 (2003)

    MathSciNet  Google Scholar 

  116. Hazen, C.: Formulating function into beverages. Food Product Design 12(10), 36–70 (2003)

    Google Scholar 

  117. Hamouda, T.; Baker, J.R.: Antimicrobial mechanism of action of surfactant lipid preparations in enteric Gram-negative bacilli. J. Appl. Microbiol. 89(3), 397–403 (2000)

    Google Scholar 

  118. Elliott, R.; Ong, T.J.: Science, medicine, and the future—nutritional genomics. BMJ 324(7351), 1438–1442 (2002)

    Google Scholar 

  119. Kim, Y.J.; Houng, S.-J.; Kim, J.H.; Kim, Y.-R.; Ji, H.G.; Lee, S.-J.: Nanoemulsified green tea extract shows improved hypocholesterolemic effects in C57BL/6 mice. J. Nutr. Biochem. 23(2), 186–191 (2012)

    Google Scholar 

  120. Graveland-Bikker, J.F.; de Kruif, C.G.: Unique milk protein based nanotubes: food and nanotechnology meet. Trends Food Sci. Technol. 17(5), 196–203 (2006)

    Google Scholar 

  121. Sanchez, A.; Recillas, S.; Font, X.; Casals, E.; Gonzalez, E.; Puntes, V.: Ecotoxicity of, and remediation with, engineered inorganic nanoparticles in the environment. Trac-Trends Anal. Chem. 30(3), 507–516 (2011)

    Google Scholar 

  122. Nickols-Richardson, S.M.: Nanotechnology: implications for food and nutrition professionals. J. Am. Diet. Assoc. 107(9), 1494–1497 (2007)

    Google Scholar 

  123. Kaya-Celiker, H.; Mallikarjunan, K.: Better nutrients and therapeutics delivery in food through nanotechnology. Food Eng. Rev. 4(2), 114–123 (2012)

    Google Scholar 

  124. Mozafari, M.R.; Johnson, C.; Hatziantoniou, S.; Demetzos, C.: Nanoliposomes and their applications in food nanotechnology. J. Liposome Res. 18(4), 309–327 (2008)

    Google Scholar 

  125. Duncan, T.V.: Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J. Colloid Interface Sci. 363(1), 1–24 (2011)

    Google Scholar 

  126. Rashidi, L.; Khosravi-Darani, K.: The applications of nanotechnology in food industry. Crit. Rev. Food Sci. Nutr. 51(8), 723–730 (2011)

    Google Scholar 

  127. Yang, H.; Qu, L.W.; Wimbrow, A.N.; Jiang, X.P.; Sun, Y.P.: Rapid detection of Listeria monocytogenes by nanoparticle-based immunomagnetic separation and real-time PCR. Int. J. Food Microbiol. 118(2), 132–138 (2007)

    Google Scholar 

  128. Bouwmeester, H.; et al.: Review of health safety aspects of nanotechnologies in food production. Regul. Toxicol. Pharmacol. 53(1), 52–62 (2009)

    Google Scholar 

  129. Valdes, M.G.; Gonzalez, A.C.V.; Calzon, J.A.G.; Diaz-Garcia, M.E.: Analytical nanotechnology for food analysis. Microchim. Acta 166(1–2), 1–19 (2009)

    Google Scholar 

  130. Ajaykumar, M.T.: Nanotechnology: emerging tool in food sector. Res. J. Biotechnol. 9(7), 12–24 (2014)

    Google Scholar 

  131. Busch, L.: Nanotechnologies, food, and agriculture: next big thing or flash in the pan? Agric. Hum. Values 25(2), 215–218 (2008)

    Google Scholar 

  132. Zong, C.L.; Fang, L.Y.; Song, F.G.; Wang, A.M.; Wan, Y.: Fluorescent fingerprint bacteria by multi-channel magnetic fluorescent nanosensor. Sens. Actuat. B-Chem. 289, 234–241 (2019)

    Google Scholar 

  133. Sun, Y.; Fang, L.Y.; Wan, Y.; Gu, Z.F.: Pathogenic detection and phenotype using magnetic nanoparticle-urease nanosensor. Sens. Actuat. B-Chem. 259, 428–432 (2018)

    Google Scholar 

  134. Ai, K.; Liu, Y.; Lu, L.: Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. J. Am. Chem. Soc. 131(27), 9496–9497 (2009)

    Google Scholar 

  135. Crevillen, A.G.; Avila, M.; Pumera, M.; Gonzalez, M.C.; Escarpa, A.: Food analysis on microfluidic devices using ultrasensitive carbon nanotubes detectors. Anal. Chem. 79(19), 7408–7415 (2007)

    Google Scholar 

  136. Mills, A.: Oxygen indicators and intelligent inks for packaging food. Chem. Soc. Rev. 34(12), 1003–1011 (2005)

    Google Scholar 

  137. Coles, D.; Frewer, L.J.: Nanotechnology applied to European food production—a review of ethical and regulatory issues. Trends Food Sci. Technol. 34(1), 32–43 (2013)

    Google Scholar 

  138. Hatzigrigoriou, N.B.; Papaspyrides, C.D.: Nanotechnology in plastic food-contact materials. J. Appl. Polym. Sci. 122(6), 3720–3739 (2011)

    Google Scholar 

  139. Setoodeh, A.R.; Sokhandani, N.: Mechanical properties investigation of glass/fiber reinforced vinyl ester/clay nanocomposites fabricated by vacuum bag molding. J. Eng. Appl. Sci. 12(13), 3455–3460 (2017)

    Google Scholar 

  140. Ranjan, S.; et al.: Nanoscience and nanotechnologies in food industries: opportunities and research trends. J. Nanopart. Res. 16(6), 2464 (2014)

    Google Scholar 

  141. Mandal, P.K.; Choi, K.; Min, S.G.; Lee, C.H.: Application of nanotechnology in food packaging: an overview. Korean J. Food Sci. Anim. Resour. 29(4), 403–408 (2009)

    Google Scholar 

  142. Sharma, C.; Dhiman, R.; Rokana, N.; Panwar, H.: Nanotechnology: an untapped resource for food packaging. Front. Microbiol. 8, 1735 (2017)

    Google Scholar 

  143. Sarwar, M.S.; Niazi, M.B.K.; Jahan, Z.; Ahmad, T.; Hussain, A.: Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging. Carbohyd. Polym. 184, 453–464 (2018)

    Google Scholar 

  144. Rigotti, D.; et al.: Polylactic acid-lauryl functionalized nanocellulose nanocomposites: microstructural, thermo-mechanical and gas transport properties. Express Polymer Letters 13(10), 858–876 (2019)

    Google Scholar 

  145. Mihindukulasuriya, S.D.F.; Lim, L.T.: Nanotechnology development in food packaging: a review. Trends Food Sci. Technol. 40(2), 149–167 (2014)

    Google Scholar 

  146. Dudefoi, W.; et al.: Nanoscience and nanotechnologies for biobased materials, packaging and food applications: new opportunities and concerns. Innova. Food Sci. Emerg. Technol. 46, 107–121 (2018)

    Google Scholar 

  147. Cushen, M.; Kerry, J.; Morris, M.; Cruz-Romero, M.; Cummins, E.: Nanotechnologies in the food industry—recent developments, risks and regulation. Trends Food Sci. Technol. 24(1), 30–46 (2012)

    Google Scholar 

  148. Chen, H.D.; Seiber, J.N.; Hotze, M.: ACS select on nanotechnology in food and agriculture: a perspective on implications and applications. J. Agric. Food Chem. 62(6), 1209–1212 (2014)

    Google Scholar 

  149. Kayaci, F.; Ertas, Y.; Uyar, T.: Enhanced thermal stability of eugenol by cyclodextrin inclusion complex encapsulated in electrospun polymeric nanofibers. J. Agric. Food Chem. 61(34), 8156–8165 (2013)

    Google Scholar 

  150. Popov, K.I.; Filippov, A.N.; Khurshudyan, S.A.: Food nanotechnologies. Russ. J. Gen. Chem. 80(3), 630–642 (2010)

    Google Scholar 

  151. Goyal, A.K.; Johal, E.S.; Rath, G.: Nanotechnology for water treatment. Curr. Nanosci. 7(4), 640–654 (2011)

    Google Scholar 

  152. Hillie, T.; Hlophe, M.: Nanotechnology and the challenge of clean water. Nat. Nanotechnol. 2(11), 663–664 (2007)

    Google Scholar 

  153. Wiesner, M.R.: Responsible development of nanotechnologies for water and wastewater treatment. Water Sci. Technol. 53(3), 45–51 (2006)

    Google Scholar 

  154. Wong, K.F.V.; Garcia, P.A.: Introduction of nanotechnology in the basic energy sciences. In: Proceedings of the Asme International Mechanical Engineering Congress and Exposition 2007, Vol 6: Energy Systems: Analysis, Thermodynamics and Sustainability, pp. 513–520 (2009)

  155. Brame, J.; Li, Q.L.; Alvarez, P.J.J.: Nanotechnology-enabled water treatment and reuse: emerging opportunities and challenges for developing countries. Trends Food Sci. Technol. 22(11), 618–624 (2011)

    Google Scholar 

  156. Qu, X.L.; Alvarez, P.J.J.; Li, Q.L.: Applications of nanotechnology in water and wastewater treatment. Water Res. 47(12), 3931–3946 (2013)

    Google Scholar 

  157. Qu, X.L.; Brame, J.; Li, Q.L.; Alvarez, P.J.J.: Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc. Chem. Res. 46(3), 834–843 (2013)

    Google Scholar 

  158. Theron, J.; Walker, J.A.; Cloete, T.E.: Nanotechnology and water treatment: applications and emerging opportunities. Crit. Rev. Microbiol. 34(1), 43–69 (2008)

    Google Scholar 

  159. Moskvins, G.; Spakovica, E.; Moskvins, A.; Shakhtarina, A.: Beldavs, V.: Development of nanotechnology in agriculture for small northern European country. In: 11th International Scientific Conference on Engineering for Rural Development, Vol 11, pp. 157–163 (2012)

  160. Cozzens, S., Cortes, R., Soumonni, O., Woodson, T.: Nanotechnology and the millennium development goals: water, energy, and agri-food. J. Nanopart. Res. 15(11), UNSP2001 (2013)

    Google Scholar 

  161. Satheesh, R.; et al.: “Removal of congo red from water using quercetin modified alpha-Fe2O3 nanoparticles as effective nanoadsorbent. Mater. Chem. Phys. 180, 53–65 (2016)

    Google Scholar 

  162. Dubey, S.; Gusain, D.; Sharma, Y.C.: Kinetic and isotherm parameter determination for the removal of chromium from aqueous solutions by nanoalumina, a nanoadsorbent. J. Mol. Liq. 219, 1–8 (2016)

    Google Scholar 

  163. Hasanzadeh, M.; Farajbakhsh, F.; Shadjou, N.; Jouyban, A.: Mesoporous (organo) silica decorated with magnetic nanoparticles as a reusable nanoadsorbent for arsenic removal from water samples. Environ. Technol. 36(1), 36–44 (2015)

    Google Scholar 

  164. Tang, W.S.; Su, Y.; Li, Q.; Gao, S.A.; Shang, J.K.: “Superparamagnetic magnesium ferrite nanoadsorbent for effective arsenic (III, V) removal and easy magnetic separation. Water Res. 47(11), 3624–3634 (2013)

    Google Scholar 

  165. Kocabas-Atakli, Z.O.; Yurum, Y.: Synthesis and characterization of anatase nanoadsorbent and application in removal of lead, copper and arsenic from water. Chem. Eng. J. 225, 625–635 (2013)

    Google Scholar 

  166. Farahbakhsh, J.; Delnavaz, M.; Vatanpour, V.: Investigation of raw and oxidized multiwalled carbon nanotubes in fabrication of reverse osmosis polyamide membranes for improvement in desalination and antifouling properties. Desalination 410, 1–9 (2017)

    Google Scholar 

  167. Abraham, S.; Ma, G.B.; Montemagno, C.D.: Janus carbon nanotube membranes by selective surface plasmoxidation. Adv. Mater. Interfaces 3(18), 1600445 (2016)

    Google Scholar 

  168. Lee, J.; et al.: High flux and high selectivity carbon nanotube composite membranes for natural organic matter removal. Sep. Purif. Technol. 163, 109–119 (2016)

    Google Scholar 

  169. Kaminska, G.; Bohdziewicz, J.; Palacio, L.; Hernandez, A.; Pradanos, P.: Polyacrylonitrile membranes modified with carbon nanotubes: characterization and micropollutants removal analysis. Desalin. Water Treat. 57(3), 1344–1353 (2016)

    Google Scholar 

  170. Lee, K.J.; Cha, E.; Park, H.D.: High antibiofouling property of vertically aligned carbon nanotube membranes at a low cross-flow velocity operation in different bacterial solutions. Desal. Water Treat. 57(50), 23505–23515 (2016)

    Google Scholar 

  171. Ileana, C C.; Gigel, P.; Stefan, B.S.; Matei, E.; Sgem.: Nanotechnology applied in wastewater treatment. Photocatalysis based titanium dioxide. In: Nano, Bio and Green—Technologies for a Sustainable Future Conference Proceedings, Sgem 2016, Vol Iii(16th International Multidisciplinary Scientific GeoConference-SGEM, pp. 99–104 (2016)

  172. Shao, T.; Zhang, P.Y.; Li, Z.M.; Jin, L.: Photocatalytic decomposition of perfluorooctanoic acid in pure water and wastewater by needle-like nanostructured gallium oxide. Chin. J. Catal. 34(8), 1551–1559 (2013)

    Google Scholar 

  173. Satnami, M.L.; Vaishanav, S.K.; Nagwanshi, R.; Ghosh, K.K.: Spectrofluorometric determination of mercury and lead by colloidal CdS nanomaterial. J. Dispersion Sci. Technol. 37(2), 196–204 (2016)

    Google Scholar 

  174. Nath, P.; Arun, R.K.; Chanda, N.: A paper based microfluidic device for the detection of arsenic using a gold nanosensor. Rsc Advances 4(103), 59558–59561 (2014)

    Google Scholar 

  175. Tay, L.L.; Hulse, J.; Ryan, S.; Tanha, J.; Fraser, J.; Wu, X.H.: Multimodal plasmonic nanosensor for the detection of pathogenic bacteria. In: Biosensing II, vol. 7397, M. Razeghi and H. Mohseni, Eds. Proceedings of SPIE, 73970B (2009)

  176. Dhillon, A.; Nair, M.; Bhargava, S.K.; Kumar, D.: Excellent fluoride decontamination and antibacterial efficacy of Fe-Ca-Zr hybrid metal oxide nanomaterial. J. Colloid Interface Sci. 457, 289–297 (2015)

    Google Scholar 

  177. Leung, Y.H.; et al.: Toxicity of ZnO and TiO2 to Escherichia coli cells. Scientific Reports 6, 35243 (2016)

    Google Scholar 

  178. Parandhaman, T.; et al.: “Antimicrobial behavior of biosynthesized silica-silver nanocomposite for water disinfection: a mechanistic perspective. J. Hazard. Mater. 290, 117–126 (2015)

    Google Scholar 

  179. Liden, A.; Lavonen, E.; Persson, K.M.; Larson, M.: Integrity breaches in a hollow fiber nanofilter—effects on natural organic matter and virus-like particle removal. Water Res. 105, 231–240 (2016)

    Google Scholar 

  180. Yousefi, N.; Fatehizedeh, A.; Ghadiri, K.; Mirzaei, N.; Ashrafi, S.D.; Mahvi, A.H.: Application of nanofilter in removal of phosphate, fluoride and nitrite from groundwater. Desalin.Water Treat. 57(25), 11782–11788 (2016)

    Google Scholar 

  181. Huang, J.; et al.: Performance of ceramic disk filter coated with nano ZnO for removing Escherichia coli from water in small rural and remote communities of developing regions. Environ. Pollut. 238, 52–62 (2018)

    Google Scholar 

  182. He, Y.; et al.: Reduction of Escherichia coli using ceramic disk filter decorated by nano-TiO2: a low-cost solution for household water purification. Sci. Total Environ. 616, 1628–1637 (2018)

    Google Scholar 

  183. Heidarpour, F.; et al.: Complete removal of pathogenic bacteria from drinking water using nano silver-coated cylindrical polypropylene filters. Clean Technol. Environ. Policy 13(3), 499–507 (2011)

    Google Scholar 

  184. Chen, L.; He, B.-Y.; He, S.; Wang, T.-J.; Su, C.-L.; Jin, Y.: Fe-Ti oxide nano-adsorbent synthesized by co-precipitation for fluoride removal from drinking water and its adsorption mechanism. Powder Technol. 227, 3–8 (2012)

    Google Scholar 

  185. Coskun, Y.I.; Ciftci, T.D.; Henden, E.: A novel nanoadsorbent Ni/NixB for preconcentration of arsenic(III) and arsenic(V) before hydride generation-atomic absorption spectrometric determination. Desal. Water Treat. 57(43), 20411–20421 (2016)

    Google Scholar 

  186. Tang, W.S.; Su, Y.; Li, Q.; Gao, S.A.; Shang, J.K.: Synthesis of superparamagnetic magnesium ferrite nanoadsorbent and its effective arsenic (III, V) removal performance and easy magnetic separation. Abstracts of Papers of the American Chemical Society, vol. 247, p. 192–ENVR (2014)

  187. Singha, N.: Nanomaterials-Based Solutions: detection of arsenic in contaminated water. IEEE Nanatechnol. Mag. 8, 17–23 (2014)

    Google Scholar 

  188. Ahmed, T.; Imdad, S.; Yaldram, K.; Butt, N.M.; Pervez, A.: Emerging nanotechnology-based methods for water purification: a review. Desal. Water Treat. 52(22–24), 4089–4101 (2014)

    Google Scholar 

  189. Patolsky, F.; Zheng, G.F.; Hayden, O.; Lakadamyali, M.; Zhuang, X.W.; Lieber, C.M.: Electrical detection of single viruses. Proc. Natl. Acad. Sci. USA 101(39), 14017–14022 (2004)

    Google Scholar 

  190. Wong, W.W.; Wong, H.Y.; Badruzzaman, A.B.M.; Goh, H.H.; Zaman, M.: Recent advances in exploitation of nanomaterial for arsenic removal from water: a review. Nanotechnology 28(4), 042001 (2017)

    Google Scholar 

  191. Mayo, J.T.; et al.: The effect of nanocrystalline magnetite size on arsenic removal. Sci. Technol. Adv. Mater. 8(1–2), 71–75 (2007)

    Google Scholar 

  192. Zhou, S.M.; Wang, D.; Sun, H.Y.; Chen, J.J.; Wu, S.H.; Na, P.: Synthesis, characterization, and adsorptive properties of magnetic cellulose nanocomposites for arsenic removal. Water Air Soil Pollut. 225(5), 1945 (2014)

    Google Scholar 

  193. Uppal, H.; Chawla, S.; Joshi, A.G.; Haranath, D.; Vijayan, N.; Singh, N.: Facile chemical synthesis and novel application of zinc oxysulfide nanomaterial for instant and superior adsorption of arsenic from water. J. Clean. Prod. 208, 458–469 (2019)

    Google Scholar 

  194. Fromer, N.A.; Diallo, M.S.: Nanotechnology and clean energy: sustainable utilization and supply of critical materials. J. Nanopart. Res. 15(11), UNSP2011 (2013)

    Google Scholar 

  195. Zhang, Z.; Sebe, G.; Rentsch, D.; Zimmermann, T.; Tingaut, P.: Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem. Mater. 26(8), 2659–2668 (2014)

    Google Scholar 

  196. Pendergast, M.M.; Hoek, E.M.V.: A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 4(6), 1946–1971 (2011)

    Google Scholar 

  197. Dunlop, P.S.M.; Byrne, J.A.; Manga, N.; Eggins, B.R.: The photocatalytic removal of bacterial pollutants from drinking water. J. Photochem. Photobiol. A-Chem. 148(1–3), 355–363 (2002)

    Google Scholar 

  198. De Volder, M.F.L.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J.: Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2013)

    Google Scholar 

  199. Mondal, S.: Carbon nanomaterials based membranes. J. Membr. Sci. Technol. 6(4), e122 (2017)

    Google Scholar 

  200. Salehi, E.; et al.: Novel chitosan/poly(vinyl) alcohol thin adsorptive membranes modified with amino functionalized multi-walled carbon nanotubes for Cu(II) removal from water: preparation, characterization, adsorption kinetics and thermodynamics. Sep. Purif. Technol. 89, 309–319 (2012)

    Google Scholar 

  201. Van der Bruggen, B.; Vandecasteele, C.: Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environ. Pollut. 122(3), 435–445 (2003)

    Google Scholar 

  202. Das, R.; Ali, M.E.; Hamid, S.B.A.; Ramakrishna, S.; Chowdhury, Z.Z.: Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336, 97–109 (2014)

    Google Scholar 

  203. Ahn, C.H.; et al.: Carbon nanotube-based membranes: fabrication and application to desalination. J. Ind. Eng. Chem. 18(5), 1551–1559 (2012)

    Google Scholar 

  204. Choi, J.-H.; Jegal, J.; Kim, W.-N.: Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes. J. Membr. Sci. 284(1–2), 406–415 (2006)

    Google Scholar 

  205. Lee, C.; Baik, S.: Vertically-aligned carbon nano-tube membrane filters with superhydrophobicity and superoleophilicity. Carbon 48(8), 2192–2197 (2010)

    Google Scholar 

  206. Kar, S.; Bindal, R.C.; Tewari, P.K.: Carbon nanotube membranes for desalination and water purification: challenges and opportunities. Nano Today 7(5), 385–389 (2012)

    Google Scholar 

  207. Goh, P.S.; Ismail, A.F.; Ng, B.C.: Carbon nanotubes for desalination: performance evaluation and current hurdles. Desalination 308, 2–14 (2013)

    Google Scholar 

  208. De Kwaadsteniet, M.; Botes, M.; Cloete, T.E.: Application of nanotechnology in antimicrobial coatings in the water industry. NANO 6(5), 395–407 (2011)

    Google Scholar 

  209. Hu, L.B.; Cui, Y.: Energy and environmental nanotechnology in conductive paper and textiles. Energy Environ. Sci. 5(4), 6423–6435 (2012)

    Google Scholar 

  210. Hussein, A.K.: Applications of nanotechnology in renewable energies-A comprehensive overview and understanding. Renew. Sustain. Energy Rev. 42, 460–476 (2015)

    Google Scholar 

  211. Guo, K.W.: Green nanotechnology of trends in future energy. Recent Pat. Nanotechnol. 5(2), 76–88 (2011)

    Google Scholar 

  212. Guo, K.W.: Green nanotechnology of trends in future energy: a review. Int. J. Energy Res. 36(1), 1–17 (2012)

    Google Scholar 

  213. Zach, M.; Hagglund, C.; Chakarov, D.; Kasemo, B.: Nanoscience and nanotechnology for advanced energy systems. Curr. Opin. Solid State Mater. Sci. 10(3–4), 132–143 (2006)

    Google Scholar 

  214. Han, C. et al.: Chapter green nanotechnology: development of nanomaterials for environmental and energy applications. In: Sustainable Nanotechnology and the Environment: Advances and Achievements, vol. 1124, N. Shamim and V. K. Sharma, Eds. (ACS Symposium Series. Chap. 12, pp. 201-229 (2013)

  215. Mao, S.S.; Chen, X.B.: Selected nanotechnologies for renewable energy applications. Int. J. Energy Res. 31(6–7), 619–636 (2007)

    Google Scholar 

  216. Saunders, J.R.; Benfield, D.; Moussa, W.; Amirfazli, A.: Nanotechnology’s implications for select systems of renewable energy. Int. J. Green Energy 4(5), 483–503 (2007)

    Google Scholar 

  217. Abdel-Mottaleb, M.S.A.; Byrne, J.A.; Chakarov, D.: Nanotechnology and solar energy. Int. J. Photoenergy Art. no. 194146 (2011)

  218. Abdin, Z.; et al.: Solar energy harvesting with the application of nanotechnology. Renew. Sustain. Energy Rev. 26, 837–852 (2013)

    Google Scholar 

  219. Serrano, E.; Rus, G.; Garcia-Martinez, J.: Nanotechnology for sustainable energy. Renew. Sustain. Energy Rev. 13(9), 2373–2384 (2009) (and references therein)

    Google Scholar 

  220. Ramadan, A.B.A.: Air pollution monitoring and use of nanotechnology based solid state gas sensors in greater Cairo Area, Egypt. In: Nanomaterials: Risks and Benefits, I. Linkov and J. Steevens, Eds. (NATO Science for Peace and Security Series C - Environmental Security, 2009, pp. 265-273.

  221. Simon, T.; Barsan, N.; Bauer, M.; Weimar, U.: Micromachined metal oxide gas sensors: opportunities to improve sensor performance. Sensors and Actuators B-Chemical 73(1), 1–26 (2001)

    Google Scholar 

  222. Rickerby, D.G.; Morrison, M.: Nanotechnology and the environment: a European perspective. Sci. Technol. Adv. Mater. 8(1–2), 19–24 (2007)

    Google Scholar 

  223. Sastry, S.V.A.R.; Sreenu, P.; IEEE.: Applications of Nanotechnology in the field of environment. In: 2012 IEEE International Conference on Engineering Education: Innovative Practices and Future Trends (2012)

  224. Nozik, A.J.: Nanoscience and Nanostructures for Photovoltaics and Solar Fuels. Nano Lett. 10(8), 2735–2741 (2010)

    Google Scholar 

  225. Sablon, K.A.; et al.: Effects of AlGaAs energy barriers on InAs/GaAs quantum dot solar cells. J. Appl. Phys. 108(7), 074305 (2010)

    Google Scholar 

  226. Nakata, K.; Fujishima, A.: TiO2 photocatalysis: design and applications. J. Photochem. Photobiol. C-Photochem. Rev. 13(3), 169–189 (2012)

    Google Scholar 

  227. Ochiai, T.; Fujishima, A.: Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification. J. Photochem. Photobiol. C-Photochem. Rev. 13(4), 247–262 (2012)

    Google Scholar 

  228. Gazit, E.: Aromatic dipeptides light up. Nat. Nanotechnol. 11(4), 309–316 (2016)

    Google Scholar 

  229. Eldada, L.: Nanotechnologies for efficient solar and wind energy harvesting and storage. In: Nanoengineering: Fabrication, Properties, Optics, and Devices Vii, vol. 7764, E. A. Dobisz and L. A. Eldada, Eds. (Proceedings of SPIE-The International Society for Optical Engineering, Art. no. 776408 (2010)

  230. Eldada, L.: Nanotechnologies for efficient solar and wind energy harvesting and storage in smart-grid and transportation applications. J. Nanophoton. 5(1), 1704 (2011)

    Google Scholar 

  231. Eldada, L.: Nanotechnologies for efficient solar energy conversion and storage. In: Dobisz, E.A.: Eldada, L.A. (eds.) Nanoengineering: Fabrication, Properties, Optics, and Devices VIII, vol. 8102. Art. no. 81020B (2011)

  232. Reddy, K.G.; et al.: On global energy scenario, dye-sensitized solar cells and the promise of nanotechnology. Phys. Chem. Chem. Phys. 16(15), 6838–6858 (2014)

    Google Scholar 

  233. Chandrasekhar, A.; Vivekananthan, V.; Khandelwal, G.; Kim, S.J.: Sustainable human–machine interactive triboelectric nanogenerator toward a smart computer mouse. ACS Sustain. Chem. Eng. 7(7), 7177–7182 (2019)

    Google Scholar 

  234. Chandrasekhar, A.; Khandelwal, G.; Alluri, N.R.; Vivekananthan, V.; Kim, S.J.: Battery-free electronic smart toys: a step toward the commercialization of sustainable triboelectric nanogenerators. ACS Sustain. Chem. Eng. 6(5), 6110–6116 (2018)

    Google Scholar 

  235. Chandrasekhar, A.; Alluri, N.R.; Vivekananthan, V.; Park, J.H.; Kim, S.J.: Sustainable biomechanical energy scavenger toward self-reliant kids’ interactive battery-free smart puzzle. ACS Sustain. Chem. Eng. 5(8), 7310–7316 (2017)

    Google Scholar 

  236. Chandrasekhar, A.; Vivekananthan, V.; Khandelwal, G.; Kim, S.J.: A fully packed water-proof, humidity resistant triboelectric nanogenerator for transmitting Morse code. Nano Energy 60, 850–856 (2019)

    Google Scholar 

  237. Khandelwal, G.; Chandrasekhar, A.; Raj, N.P.M.J.; Kim, S.J.: Metal-organic framework: a novel material for triboelectric nanogenerator-based self-powered sensors and systems. Adv. Energy Mater. 9(14), 1803581 (2019)

    Google Scholar 

  238. Hamid, H.M.A.; Celik-Butler, Z.: Characterization and performance analysis of Li-doped ZnO nanowire as a nano-sensor and nano-energy harvesting element. Nano Energy 50, 159–168 (2018)

    Google Scholar 

  239. Asadi, E.; Askari, H.; Khamesee, M.B.; Khajepour, A.: High frequency nano electromagnetic self-powered sensor: concept, modelling and analysis. Measurement 107, 31–40 (2017)

    Google Scholar 

  240. Fuh, Y.K.; Li, S.C.; Chen, C.Y.; Tsai, C.Y.: A fully packaged self-powered sensor based on near-field electrospun arrays of poly(vinylidene fluoride) nano/micro fibers. Exp. Polym. Lett. 12(2), 136–145 (2018)

    Google Scholar 

  241. Boulaiz, H.; et al.: Nanomedicine: application areas and development prospects. Int. J. Mol. Sci. 12(5), 3303–3321 (2011)

    Google Scholar 

  242. Caldorera-Moore, M.; Peppas, N.A.: Micro- and nanotechnologies for intelligent and responsive biomaterial-based medical systems. Adv. Drug Deliv. Rev. 61(15), 1391–1401 (2009)

    Google Scholar 

  243. McGrady, E., Conger, S., Blanke, S., Landry, B.J.L.: Emerging technologies in healthcare: navigating risks, evaluating rewards. J. Healthcare Manag. 55(5), 353–364 (2010)

    Google Scholar 

  244. Mnneil, S.E.: Nanotechnology for the biologist. J. Leukoc. Biol. 78(3), 585–594 (2005)

    Google Scholar 

  245. Nath, D.; Banerjee, P.: Green nanotechnology—a new hope for medical biology. Environ. Toxicol. Pharmacol. 36(3), 997–1014 (2013)

    Google Scholar 

  246. Corbett, H.J.; Fernando, G.J.P.; Chen, X.F.; Frazer, I.H.; Kendall, M.A.F.: Skin vaccination against cervical cancer associated human papillomavirus with a novel micro-projection array in a mouse model. PLoS ONE 5(10), e13460 (2010)

    Google Scholar 

  247. Balasundaram, G.; Webster, T.J.: Nanotechnology and biomaterials for orthopedic medical applications. Nanomedicine 1(2), 169–176 (2006)

    Google Scholar 

  248. Stylios, G.K.; Giannoudis, P.V.; Wan, T.: Applications of nanotechnologies in medical practice. Injury-Int. J. Care Injur. 36, S6–S13 (2005)

    Google Scholar 

  249. Tyshenko, M.G.: Medical nanotechnology using genetic material and the need for precaution in design and risk assessments. Int. J. Nanotechnol. 5(1), 116–123 (2008)

    Google Scholar 

  250. He, J.; VanBrocklin, H.F.; Franc, B.L.; Seo, Y.; Jones, E.F.: Nanoprobes for medical diagnosis: current status of nanotechnology in molecular imaging. Curr. Nanosci. 4(1), 17–29 (2008)

    Google Scholar 

  251. Cormode, D.P.; Skajaa, T.; Fayad, Z.A.; Mulder, W.J.M.: Nanotechnology in Medical Imaging Probe Design and Applications. Arterioscler. Thromb. Vasc. Biol. 29(7), 992–1000 (2009)

    Google Scholar 

  252. Ferrari, M.; Downing, G.: Medical nanotechnology—shortening clinical trials and regulatory pathways? Biodrugs 19(4), 203–210 (2005)

    Google Scholar 

  253. Flari, V.; Chaudhry, Q.; Neslo, R.; Cooke, R.: Expert judgment based multi-criteria decision model to address uncertainties in risk assessment of nanotechnology-enabled food products. J. Nanopart. Res. 13(5), 1813–1831 (2011)

    Google Scholar 

  254. Frewer, L.J.; Gupta, N.; George, S.; Fischer, A.R.H.; Giles, E.L.; Coles, D.: Consumer attitudes towards nanotechnologies applied to food production. Trends Food Sci. Technol. 40(2), 211–225 (2014)

    Google Scholar 

  255. Gewin, V.: Nanotech’s big issue. Nature 443(7108), 137 (2006)

    Google Scholar 

  256. Erdem, S.: Consumers’ preferences for nanotechnology in food packaging: a discrete choice experiment. J. Agric. Econ. 66(2), 259–279 (2015)

    Google Scholar 

  257. Musee, N.: Nanotechnology risk assessment from a waste management perspective: are the current tools adequate? Hum. Exp. Toxicol. 30(8), 820–835 (2011)

    Google Scholar 

  258. Boldrin, A.; Hansen, S.F.; Baun, A.; Hartmann, N.I.B.; Astrup, T.F.: Environmental exposure assessment framework for nanoparticles in solid waste. J. Nanoparticle Res. 16(6), 2394 (2014)

    Google Scholar 

  259. Balbus, J.M.; Florini, K.; Denison, R.A.; Walsh, S.A.: Protecting workers and the environment: an environmental NGO’s perspective on nanotechnology. J. Nanopart. Res. 9(1), 11–22 (2007)

    Google Scholar 

  260. Fan, A.M.; Alexeeff, G.: Nanotechnology and Nanomaterials: toxicology, Risk Assessment, and Regulations. J. Nanosci. Nanotechnol. 10(12), 8646–8657 (2010)

    Google Scholar 

  261. Reijnders, L.: Cleaner nanotechnology and hazard reduction of manufactured nanoparticles. J. Clean. Prod. 14(2), 124–133 (2006)

    Google Scholar 

  262. Handy, R.D.; Shaw, B.J.: Toxic effects of nanoparticles and nanomaterials: implications for public health, risk assessment and the public perception of nanotechnology. Health Risk Soc. 9(2), 125–144 (2007)

    Google Scholar 

  263. Chau, C.F.; Wu, S.H.; Yen, G.C.: The development of regulations for food nanotechnology. Trends Food Sci. Technol. 18(5), 269–280 (2007)

    Google Scholar 

  264. Aitken, R.J.; et al.: A multidisciplinary approach to the identification of reference materials for engineered nanoparticle toxicology. Nanotoxicology 2(2), 71–78 (2008)

    Google Scholar 

  265. Farber, D.; Lakhtakia, A.: Scenario planning and nanotechnological futures. Eur. J. Phys. 30(4), S3–S15 (2009)

    Google Scholar 

  266. Borm, P.J.A.; Kreyling, W.: Toxicological hazards of inhaled nanoparticles—potential implications for drug delivery. J. Nanosci. Nanotechnol. 4(5), 521–531 (2004)

    Google Scholar 

  267. Dudo, A.; Choi, D.H.; Scheufele, D.A.: Food nanotechnology in the news. Coverage patterns and thematic emphases during the last decade. Appetite 56(1), 78–89 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Mondal.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Glossary

Nanotechnology

Nanotechnology is defined as manipulation or control of materials in the nanoscale region with at least one dimension typically in the range of less than or equal to 100 nanometers. Nanotechnology studies the materials at atomic, and molecular scales, where properties of the material differ significantly from those of bulk materials

Nanomaterials

A nanomaterial has at least one dimension in the nano scale region i.e. typically less than one hundred nanometre

Nanoencapsulation

Nanoencapsulation is an important process for the formation of nanostructured materials. The process involves entrapping core of solid particle or liquid droplet by a solid or liquid shell generally, made of another material with a dimension typically less than or equal to 100 nm

Self-assembly

Components either separately or linked spontaneously to form ordered structure in self-assembly process. The interactions in self-assembly process usually are noncovalent, coordination interactions and solvophobic effects. Intermolecular forces keep the spontaneous arrangement of molecules into a stable and precise cluster of nano structure. Self-assembly process leads to the development of spontaneous complex nanostructures cluster in a diverse range of interdisciplinary fields ranging from materials science, physics, chemistry to molecular biology

Nanoemulsion

Nano emulsions are nano sized emulsions with improved colloidal stability of suspension due to the thermodynamically stable isotropic system. In nano emulsion two immiscible liquids are mixed together to form a homogeneous single phase by means of an emulsifying agent and the size of droplets typically less than 100 nm. Nano emulsion differ from the micro emulsion in the size and shape of particles which are dispersed in the continuous phase

Nanofertilizer

A nano fertilizer can be defined as products which could delivers micronutrients to the plants/crops by nanosized packs (viz. nanoemulsion, nanoencapsulated products etc.) which coated with thin protective coatings. The nano fertilizers release the micronutrients on demand, hence, reduces the losses of useful components by hindering them to prematurely converting into chemical/gaseous forms

Nano smart pesticide

Nano smart pesticide provides better penetration of active ingredient to the pest affected tissues by constant and slow release of active ingredients and this will avoid phytotoxicity on the crop using systemic herbicides against parasitic weeds

Nanobiosensors

Biosensors are devices which has the ability of biological interaction to specifically detect target analytes. Nanobiosensors combine with novel technologies in molecular biology microfluidics and nanomaterials

Electromechanical nanosensor

Nanotechnology based electromechanical sensors can be prepared by coating of water sensitive nanopolymer on micromachined microelectromechanical system (MEMS) cantilever beams and system can be used for sensing of moisture and temperature.

Optical nanosensors

Optical nanosensors are work in the principle of changes in the surface properties of a sensor chip once the analyte is bound to a sensing layer by sorption or complex formation of the receptor target couple. Different chemical-physical phenomena viz. absorption fluorescence and surface plasmon resonance (SPR) are used for various optical bio nanosensors

Electrochemical biosensor

Electrochemical biosensor can provides the specific quantitative or semi quantitative analytical information by using a biological-recognition element and this is in direct spatial contact with an electrochemical transduction element. Potentiometric amperometric, voltammetric and impedance are various types of electrochemical biosensors. Potential across the interface is measured by potentiometric sensors which are zero current devices

Liposomes

Liposomes are sphere shaped vesicles having one or more lipid bilayer. Liposomes are used to deliver microscopic substances of drugs nutrients etc. to the cells

Micelles

Micelles are spherical cluster of atoms ions or molecules, which forming an equilibrium colloidal dimensions. Micelles can be formed in aqueous media by self-assembly of either amphiphilic or charged molecules

Intelligent nano packaging

Nanotechnology allows materials scientists to tailor the structure of packaging materials on a molecular scale to provide multi-functional properties to packaging to improve food quality and safety. Intelligent nano-packaging acts as a passive barrier as well as interacts with the foods in some desirable way such as releasing useful compounds e.g. antimicrobial or antioxidant agents on demand, or by removing some detrimental components such as oxygen or water vapour

Eugenol (EG)

Eugenol is extracted from plants with few functional properties such as antibacterial antifungal and antioxidant. In presence of oxygen, light, and heat, the Eugenol is quite susceptible to degradation

Nanomembrane

Nanomembranes can be defined as the membrane material which separates liquids or gasses at the molecular level. Nanomembrane can be synthetic structure with thickness below 100 nm or pore size below 100 nm.

Nanomedicine

Nanomedicine is the application of nano structured materials in medical fields. Nanomedicine applies theory and tools of nanotechnology for the deceases detection prevention and diagnosis

Nanosafety

Nanosafety deals with impact of nanomaterials for the potential exposure of environmental, toxicological aspects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, S. Potential of Nanotechnology for Rural Applications. Arab J Sci Eng 45, 5011–5042 (2020). https://doi.org/10.1007/s13369-019-04332-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04332-5

Keywords

Navigation