Skip to main content
Log in

Synthesis, Characterization, Hydrolytic Degradation and Mathematical Modeling of Poly[bis(2(2-methoxyethoxyethoxy diethylamino)phosphazene]

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The use of polymer-based polyphosphazene is increasing in biomedical industry due to their degradable nature, and their specific role can further be tailored by substituting the chloro groups in the linear precursor with suitable nucleophiles. In this study, we aimed to synthesize a novel degradable polymer based on polyphosphazene by derivatizing the linear poly(dichlorophosphazene) precursor with diethyl amine and 2-(2-methoxyethoxy)ethanol. The structure of the synthesized polymer, poly[bis(2(2-methoxyethoxyethoxy diethylamino)phosphazene] (PMEEDEAP) was elucidated with 1H NMR and 31P NMR. The molar mass distribution and molecular weight of the synthesized polymers were assessed by employing GPC. The hydrolytic degradation, in vitro, of the polymer was carried out in phosphate-buffered saline (PBS) with pH ~ 7.0 and at 37 °C. The polymer showed a weight loss of 95% in 5 weeks. Current studies showed that the synthesized degradable polymer may further be subjected to in vivo studies and employed as a potential candidate for biomedical applications, i.e., controlled-drug delivery and tissue engineering. In addition, the experimental data were analyzed by graphical and statistical methods, and it was found that the weight loss of PMEEDEAP is linear function of time, i.e., \( w_{t} = - 1 \times 10^{-3} \;t_{{\text{hr}}} + 1.068. \) The value of the coefficient of determination (R2) is found to be 0.978, which indicates that the workability of the model is good.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akram, M.; Wang, L.; Yu, H.; Amer, W.A.; Khalid, H.; Abbasi, N.M.; Chen, Y.; Zain-Ul-, A.; Saleem, M.; Tong, R.: Polyphophazenes as anti-cancer drug carriers: from synthesis to application. Prog. Polym. Sci. 39, 1987–2010 (2014)

    Article  Google Scholar 

  2. Teasdale, I.; Brüggemann, O.: Polyphosphazenes: multifunctional, biodegradable vehicles for drug and gene delivery. Polymers (Basel) 5, 161–187 (2013)

    Article  Google Scholar 

  3. Amin, A.M.; Wang, L.; Wang, J.; Yu, H.; Huo, J.; Gao, J.; Xiao, A.: Recent research progress in the synthesis of polyphosphazenes and their applications. Des. Monomers Polym. 12, 357–375 (2009)

    Article  Google Scholar 

  4. Amin, A.M.; Wang, L.; Wang, J.; Yu, H.; Gao, J.; Li, C.; Huo, J.; Amer, W.A.; Yan, G.; Ma, L.: Recent research progress in the synthesis of polyphosphazenes elastomers and their applications. J. Polym. Plast. Technol. Eng. 49, 1399–1405 (2010)

    Article  Google Scholar 

  5. Amin, A.M.; Wang, L.; Wang, J.; Amer, W.A.; Huo, J.; Yu, H.; Gao, J.: Synthesis and characterization of poly[bis(resorcinol monobenzoate)phosphazenes], poly[bis(resorcinol monobenzoate diethylamino)phosphazene] and their self assembly behaviors. J. Inorg. Organomet. Polym. Mater. 21, 283–290 (2011)

    Article  Google Scholar 

  6. Amin, A.M.; Wang, L.; Wang, J.; Yu, H.; Amer, W.A.; Gao, J.; Lei, Z.; Zhao, Y.; Huo, J.; Tai, Y.: Synthesis and characterization of poly[bis (p-oxybenzaldehyde diethylamino) phosphazenes], poly[bis(p-oxybenzaldehyde) phosphazene], poly[bis(di ethylamino)phosphazenes], and their self assembly behaviors. J. Macromol. Sci. Part A Pure Appl. Chem 48, 937–946 (2011)

    Article  Google Scholar 

  7. Amin, A.M.; Wang, L.; Yu, H.; Amer, W.A.; Gao, J.; Huo, J.; Tai, Y.; Zhang, L.: Synthesis and characterization of poly[bis(ethyl salicylate)phosphazenes], poly[bis(ethyl salicylate diethylamino)phosphazenes] and their hydrolytic degradation. J. Inorg. Organomet. Polym. Mater. 22, 196–204 (2012)

    Article  Google Scholar 

  8. Nichol, J.L.; Hotham, I.T.; Allcock, H.R.: Ethoxyphosphazene polymers and their hydrolytic behavior. Polym. Degrad. Stab. 109, 92–96 (2014)

    Article  Google Scholar 

  9. Lee, C.; Su, J.; Kim, I.; Jun, H.; Hyung, T.; Taek, K.; Seong, E.; Choon, K.; Seok, Y.: Decanoic acid-modified glycol chitosan hydrogels containing tightly adsorbed palmityl-acylated exendin-4 as a long-acting sustained-release anti-diabetic system. Acta Biomater. 10, 812–820 (2014)

    Article  Google Scholar 

  10. Song, S.; Sohn, Y.S.: Synthesis and hydrolytic properties of polyphosphazene/(diamine)platinum/saccharide conjugates. J. Control. Release 55, 161–170 (1998)

    Article  Google Scholar 

  11. Oredein-McCoy, O.; Krogman, N.R.; Weikel, A.L.; Hindenlang, M.D.; Allcock, H.R.; Laurencin, C.T.: Novel factor-loaded polyphosphazene matrices: potential for driving angiogenesis. J. Microencapsul. 26, 544–555 (2009)

    Article  Google Scholar 

  12. Potta, T.; Chun, C.; Song, S.C.: Chemically crosslinkable thermosensitive polyphosphazene gels as injectable materials for biomedical applications. Biomaterials 30, 6178–6192 (2009)

    Article  Google Scholar 

  13. Bi, Y.M.; Gong, X.Y.; Wang, W.Z.; Yu, L.; Hu, M.Q.; Shao, L.D.: Synthesis and characterization of new biodegradable thermosensitive polyphosphazenes with lactic acid ester and methoxyethoxyethoxy side groups. Chin. Chem. Lett. 21, 237–241 (2010)

    Article  Google Scholar 

  14. Brugmans, M.C.P.; Sӧntjens, S.H.M.; Cox, M.A.J.; Nandakumar, A.; Bosman, A.W.; Mes, T.; Janssen, H.M.; Bouten, C.V.C.; Baaijens, F.P.T.; Driessen-Mol, A.: Hydrolytic and oxidative degradation of electrospun supramolecular biomaterials: in vitro degradation pathways. Acta Biomater. 27, 21–31 (2015)

    Article  Google Scholar 

  15. Nichol, J.L.; Allcock, H.R.: Polyphosphazenes with amino acid citronellol ester side groups for biomedical applications. Eur. Polym. J. 62, 214–221 (2015)

    Article  Google Scholar 

  16. Allcock, H.R.: The expanding field of polyphosphazene high polymers. Dalton Trans. 45, 1856–1862 (2016)

    Article  Google Scholar 

  17. Chih, H.; Mitsuru, U.; Ping, L.: Synthesis and characterization of polymer electrolytes based on cross-linked phenoxy-containing polyphosphazenes. J. Polym. Sci. Part A Polym. Chem. 54, 352–358 (2016)

    Article  Google Scholar 

  18. Allcock, H.R.: Generation of structural diversity in polyphosphazenes. Appl. Organomet. Chem. Rev. 27(11), 620–629 (2013)

    Article  Google Scholar 

  19. Chunying, M.; Xiao, Z.; Changguo, D.; Baojing, Z.; Chunhua, H.; Chao, L.; Renzhong, Q.: Water-soluble cationic polyphosphazenes grafted with cyclic polyamine and imidazole as an effective gene delivery vector. Bioconjug. Chem. 27(4), 1005–1012 (2016)

    Article  Google Scholar 

  20. Jing, X.; Xiumei, Z.; Liyan, Q.: Polyphosphazene vesicles for co-delivery of doxorubicin and chloroquine with enhanced anticancer efficacy by drug resistance reversal. Int. J. Pharm. 498, 70–81 (2016)

    Article  Google Scholar 

  21. Akram, M.; Haojie, Y.; Li, W.; Hamad, K.; Abbasi, N.M.; Yongsheng, Z.C.; Fujie, R.; Saleem, M.: Sustained release of hydrophilic drug from polyphosphazenes/poly(methyl methacrylate) based microspheres and their degradation study. Mater. Sci. Eng. C 58, 169–179 (2016)

    Article  Google Scholar 

  22. Aoufi, D.; Serier, A.: Development and characterization of biodegradables packaging obtained from biopolymers mixture. J. Macromol. Sci. Part A Pure Appl. Chem. 55, 11–16 (2018)

    Article  Google Scholar 

  23. Nor Faezah, A.; Suffian, M.; Annuar, M.: Functionalization of medium-chain-length poly(3-hydroxyalkanoates) as amphiphilic material by graft copolymerization with glycerol 1,3-diglycerolate diacrylate and its mechanism. J. Macromol. Sci. Part A Pure Appl. Chem. 55, 66–74 (2018)

    Article  Google Scholar 

  24. Pradeep, K.D.; Diego, A.G.; Robert, J.M.: (Bio)polymeric hydrogels as therapeutic agents. J. Macromol. Sci. Part A Pure Appl. Chem. 44(12), 994–1003 (2011)

    Google Scholar 

  25. Vijayendra, K.; Bhavna, G.; Gaurav, K.; Mukesh, K.P.; Eric, A.; Virinder, S.P.; Jayant, K.; Watterson, A.C.: Novel PEGylated amphiphilic copolymers as nanocarriers for drug delivery: synthesis, characterization and curcumin encapsulation. J. Macromol. Sci. Part A Pure Appl. Chem. 47(12), 1154–1160 (2010)

    Article  Google Scholar 

  26. Abd El-Mohdy, H.L.; El-Sayed, A.H.: Preparation of polyvinyl pyrrolidone-based hydrogels by radiation-induced crosslinking with potential application as wound dressing. J. Macromol. Sci. Part A Pure Appl. Chem. 45(12), 995–1002 (2008)

    Article  Google Scholar 

  27. Helena, H.; Sandra, P.; Oliver, B.; Ian, T.: Polyphosphazene based star-branched and dendritic molecular brushes. Macromol. Rapid Commun. 37, 769–774 (2016)

    Article  Google Scholar 

  28. Cuiyan, T.; Zhicheng, T.; Chen, C.; Zhongjing, L.; Tomasz, M.; Harry, R.A.: Synthesis and characterization of trifluoroethoxy polyphosphazenes containing polyhedral oligomeric silsesquioxane (POSS) side groups. Macromolecules 49, 1313–1320 (2016)

    Google Scholar 

  29. Tanzeela, G.S.; Shazia, K.; Amin, A.; Zulfiqar, A.; Shumaila, R.; Hajira, R.; Asmat, Z.; Shabbir, H.; Waqas, M.: Synthesis, characterization and hydrolytic degradation of p-Cresol substituted polyphosphazenes. Arab. J. Sci. Eng. (online) (2019). https://doi.org/10.1007/s13369-019-03952-1

    Article  Google Scholar 

  30. Summe, U.R.; Wang, L.; Yu, H.; Haroon, M.; Elshaarani, T.; Kaleem, R.N.; Shah, F.; Amin, K.; Ahsan, N.; Xia, X.; Lisong, T.: Synthesis of polyphosphazene and preparation of microspheres from polyphosphazene blends with PMMA for drug combination therapy. J. Mater. Sci. 54, 745–764 (2019)

    Article  Google Scholar 

  31. Magiri, R.; Mutwiri, G.; Wilson, H.L.: Recent advances in experimental polyphosphazene adjuvants and their mechanisms of action. Cell Tissue Res. 374(3), 465–471 (2018)

    Article  Google Scholar 

  32. Yan, L.; Zhengping, Z.; Dingzhong, Y.; Yun, W.; Ying, D.; Yean, Z.: Introduction of amino groups into polyphosphazene framework supported on CNT and coated Fe3O4 nanoparticles for enhanced selective U(VI) adsorption. Appl. Surf. Sci. 466, 893–902 (2019)

    Article  Google Scholar 

  33. Simge, M.Ö.; Yasemin, S.D.: One-pot synthesis and characterization of crosslinked polyphosphazene dopamine microspheres for controlled drug delivery applications. J. Macromol. Sci. Part A (2019). https://doi.org/10.1080/10601325.2019.1615838

    Article  Google Scholar 

  34. Wei, H.H.; Pilar, S.G.; Esther, G.I.; Delyan, P.I.; Ruman, R.; Anna, M.G.; Noemi, C.; Cameron, A.; Marcos, G.F.: Structure-optimized interpolymer polyphosphazene complexes for effective gene delivery against glioblastoma. Adv. Ther. 2, 1800126 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Higher Education Commission (HEC) for financial assistance of this project. Authors are also grateful to Dr Zafar Iqbal Zafar and Dr Anees for mathematical modeling and Dr Yar Muhammad, IRCBM COMSATS, Lahore, Pakistan, for their support regarding the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abid M. Amin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amin, A.M., Intisar, A., Hussain, H. et al. Synthesis, Characterization, Hydrolytic Degradation and Mathematical Modeling of Poly[bis(2(2-methoxyethoxyethoxy diethylamino)phosphazene]. Arab J Sci Eng 45, 241–247 (2020). https://doi.org/10.1007/s13369-019-04278-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04278-8

Keywords

Navigation