Skip to main content
Log in

Heat-Affected Zone Investigation During the Laser Beam Drilling of Hybrid Composite Using Statistical Approach

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the present work, basalt–glass hybrid composite has been fabricated and machined using laser beam drilling, to predict a safe machining zone pertaining to high drill quality with minimum heat-affected zone and maximum hole circularity. The prediction of the zone has been done by mathematical modeling using response surface methodology. The obtained zone has also been validated by performing more experiments. Moreover, the dependency of hole circularity and heat-affected zone on input parameters has also been discussed. From the results, it is evident that the obtained zone is capable of minimizing the heat-affected zone with acceptable hole circularity. Moreover, the behavior of input parameters is non-monotonic in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Petrucci, R.; Nisini, E.; Ghelli, D.; Santulli, C.; Puglia, D.; Sarasini, F., et al.: Mechanical and impact characterisation of hybrid composite laminates based on flax, hemp, basalt and glass fibers produced by vacuum infusion. In: ECCM15, 15th European Conference on Composite Materials (2012)

  2. Karataş, M.A.; Gökkaya, H.: A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Def. Technol. 14, 318–326 (2018)

    Article  Google Scholar 

  3. Tsao, C.C.; Hocheng, H.: Taguchi analysis of delamination associated with various drill bits in drilling of composite material. Int. J. Mach. Tools Manuf. 44, 1085–1090 (2004)

    Article  Google Scholar 

  4. Hocheng, H.; Tsao, C.C.: Comprehensive analysis of delamination in drilling of composite materials with various drill bits. J. Mater. Process. Technol. 140, 335–339 (2003)

    Article  Google Scholar 

  5. Davim, J.P.; Rubio, J.C.; Abrao, A.M.: A novel approach based on digital image analysis to evaluate the delamination factor after drilling composite laminates. Compos. Sci. Technol. 67, 1939–1945 (2007)

    Article  Google Scholar 

  6. Gaugel, S.; Sripathy, P.; Haeger, A.; Meinhard, D.; Bernthaler, T.; Lissek, F.; et al.: A comparative study on tool wear and laminate damage in drilling of carbon-fiber reinforced polymers (CFRP). Compos. Struct. 155, 173–183 (2016)

    Article  Google Scholar 

  7. Abrate, S.: Machining of composite materials. In: Composites Engineering Handbook (A 98-11526 01-24), New York, Marcel Dekker, Inc. (Materials Engineering., vol. 11, pp. 777–810, 1997.

  8. Faisal, N.; Zindani, D.; Kumar, K.; Bhowmik, S.: Laser micromachining of engineering materials: a review. In: Kumar, K., Zindani, D., Kumari, N., Davim, J.P. (eds.) Micro and Nano Machining of Engineering Materials: Recent Developments, pp. 121–136. Springer, Cham (2019)

    Chapter  Google Scholar 

  9. Solati, A.; Hamedi, M.; Safarabadi, M.: Combined GA-ANN approach for prediction of HAZ and bearing strength in laser drilling of GFRP composite. Opt. Laser Technol. 113, 104–115 (2019)

    Article  Google Scholar 

  10. Herzog, D.; Jaeschke, P.; Meier, O.; Haferkamp, H.: Investigations on the thermal effect caused by laser cutting with respect to static strength of CFRP. Int. J. Mach. Tools Manuf. 48, 1464–1473 (2008)

    Article  Google Scholar 

  11. Li, Z.L.; Zheng, H.Y.; Lim, G.C.; Chu, P.L.; Li, L.: Study on UV laser machining quality of carbon fibre reinforced composites. Compos. Part A: Appl. Sci. Manuf. 41, 1403–1408 (2010)

    Article  Google Scholar 

  12. Hejjaji, A.; Singh, D.; Kubher, S.; Kalyanasundaram, D.; Gururaja, S.: Machining damage in FRPs: Laser versus conventional drilling. Compos. Part A: Appl. Sci. Manuf. 82, 42–52 (2016)

    Article  Google Scholar 

  13. Lau, W.S.; Lee, W.; Pang, S.: Pulsed Nd: YAG laser cutting of carbon fibre composite materials. CIRP Ann. Manuf. Technol. 39, 179–182 (1990)

    Article  Google Scholar 

  14. Mathew, J.; Goswami, G.; Ramakrishnan, N.; Naik, N.: Parametric studies on pulsed Nd: YAG laser cutting of carbon fibre reinforced plastic composites. J. Mater. Process. Technol. 89, 198–203 (1999)

    Article  Google Scholar 

  15. Robinson, T.J.: Box–Behnken designs. In: Encyclopedia of Statistics in Quality and Reliability (2007)

  16. Ferreira, S.C.; Bruns, R.; Ferreira, H.; Matos, G.; David, J.; Brandao, G.; et al.: Box–Behnken design: an alternative for the optimization of analytical methods. Anal. Chim. Acta 597, 179–186 (2007)

    Article  Google Scholar 

  17. Narayanasamy, P.; Selvakumar, N.: Effect of hybridizing and optimization of TiC on the tribological behavior of Mg–MoS2 composites. J. Tribol. 139, 051301 (2017)

    Article  Google Scholar 

  18. Ramkumar, T.; Narayanasamy, P.; Selvakumar, M.; Balasundar, P.: Effect of B4C reinforcement on the dry sliding wear behaviour of Ti-6Al-4V/B4C sintered composites using response surface methodology. Arch. Metall. Mater. 63, 1179–1200 (2018)

    Google Scholar 

  19. Shrivastava, P.K.; Singh, B.; Shrivastava, Y.; Pandey, A.K.: Prediction of geometric quality characteristics during laser cutting of Inconel-718 sheet using statistical approach. J. Braz. Soc. Mech. Sci. Eng. 41, 216 (2019)

    Article  Google Scholar 

  20. Shrivastava, Y.; Singh, B.: Assessment of stable cutting zone in CNC turning based on empirical mode decomposition and genetic algorithm approach. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 232, 3573–3594 (2017)

    Article  Google Scholar 

  21. Shrivastava, Y.; Singh, B.: Estimation of stable cutting zone in turning based on empirical mode decomposition and statistical approach. J. Braz. Soc. Mech. Sci. Eng. 40, 77 (2018)

    Article  Google Scholar 

  22. Box, G.E.; Draper, N.R.: Empirical Model-Building and Response Surfaces. Wiley, London (1987)

    MATH  Google Scholar 

  23. Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M.: Response Surface Methodology: Process and Product Optimization Using Designed Experiments (Wiley Series in Probability and Statistics). Wiley, New York (2009)

    MATH  Google Scholar 

  24. Singh, B.; Nanda, B.: Slip damping mechanism in welded structures using response surface methodology. Exp. Mech. 52, 771–791 (2012)

    Article  Google Scholar 

  25. Singh, B.; Nanda, B.K.: Investigation into the effect of surface roughness on the damping of tack-welded structures using the response surface methodology approach. J. Vib. Control 19, 547–559 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Dr. B. N. Upadhayay, SOF, Solid State Division at the RRCAT (Raja Ramanna Centre for Advanced Technology), Indore (M.P), for providing the experimental support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogesh Shrivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, A., Singh, B. & Shrivastava, Y. Heat-Affected Zone Investigation During the Laser Beam Drilling of Hybrid Composite Using Statistical Approach. Arab J Sci Eng 45, 833–848 (2020). https://doi.org/10.1007/s13369-019-04162-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-04162-5

Keywords

Navigation