Skip to main content

Advertisement

Log in

Promising bioadhesive ofloxacin-loaded polymeric nanoparticles for the treatment of ocular inflammation: formulation and in vivo evaluation

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Our work tackles the combined advantages of both nanotechnology and the bioadhesive gel properties which were utilized to design an ocular drug delivery system that is capable to treat ocular inflammation. Nanoparticles encapsulating an antibiotic drug, ofloxacin, were fabricated using emulsion solvent evaporation technique adopting 23 full factorial design to evaluate the effect of formulation parameters: that is to say, the molecular weight of the polymer (polycaprolactone), amount of Kolliphor P188, and presence of the charge inducer (chitosan hydrochloride) on the measured responses: drug entrapment efficiency (EE%), particle size (PS), polydispersity index (PDI) and zeta potential (ZP). The results show that the optimized LPCL-NP2 formulation (composed of low molecular weight polycaprolactone, 500 mg of Kolliphor P188, 0.25% chitosan hydrochloride, and 50 mg ofloxacin)  displayed a sphere shape with EE%, PS, PDI, and ZP values of 89.73 ± 0.04%, 195.4 ± 13.17 nm, 0.323 ± 0.01, and 55.4 ± 0.66 mV, respectively. DSC study confirmed the amorphous nature of the drug. The optimized nanoparticle formulation was then further incorporated into the following two ocular formulations: gel (LPCL-NP2-G4) and in situ forming gel (LPCL-NP2-ISG4). The penetration of optimized ocular formulations was assessed by confocal laser scanning microscopy. The antimicrobial study was conducted  for the following three ocular formulations: LPCL-NP2 presented as eye drops, LPCL-NP2-G4, and LPCL-NP2-ISG4 as well as the market product using rabbits which were infected in their eyes with Escherichia coli. Results revealed that rabbits treated with LPCL-NP2-ISG4 demonstrated a remarkable antibacterial efficacy and evident low bacterial growth which was additionally assured by the histopathological examination of eye biopsies compared with the other investigated groups. Thus, a novel ofloxacin-loaded nanoparticle formulation based on polycaprolactone is presented in the form of mucoadhesive non-irritating in situ forming ocular gel possessing a superior antibacterial activity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8.
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Woodruff MA, Hutmacher DW. The return of a forgotten polymer: polycaprolactone in the 21st century. Prog Polym Sci. 2010;35:1217–56.

    Article  CAS  Google Scholar 

  2. Imbrogno A, Piacentini E, Drioli E, Giorno L. Micro and nano polycaprolactone particles preparation by pulsed back and-forward cross-flow batch membrane emulsification for parenteral administration. Int J Pharm. 2014;477:344–50.

    Article  CAS  PubMed  Google Scholar 

  3. Chandasana H, Prasad YD, Chhonker YS, Chaitanya TK, Mishra NN, Mitra K, et al. Corneal targeted nanoparticles for sustained natamycin delivery and their PK/PD indices: an approach to reduce dose and dosing frequency. Int J Pharm. 2014;477:317–25.

    Article  CAS  PubMed  Google Scholar 

  4. Nagayama A, Nakao T, Taen H. In vitro activities of ofloxacin and four other new quinoline-carboxylic acids against Chlamydia trachomatis. Antimicrob Agents Chemother. 1988;32:1735–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gwon A. Topical ofloxacin compared with gentamicin in the treatment of external ocular infection. Ofloxacin Study Group. Brit J Ophthalmol. 1992;76:714–8.

    Article  CAS  Google Scholar 

  6. Sayed EG, et al. Improved corneal bioavailability of ofloxacin: biodegradable microsphere-loaded ion-activated in situ gel delivery system. Drug Des Devel Ther. 2015;9:1427–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Karataş A, Sonakin Ö, KiliÇarslan M, Baykara T. Poly (Ɛ-caprolactone) microparticles containing levobunolol HCl prepared by a multiple emulsion (w/o/w) solvent evaporation technique: effects of some formulations parameters on microparticle characteristics. J Microencapsul. 2009;26(1):63–74.

    Article  PubMed  CAS  Google Scholar 

  8. Karataş A, et al. Ofloxacin loaded electrospun fibers for ocular drug delivery: effect of formulation variables on fiber morphology and drug release. Current Drug Delivery. 2016;13:433–43.

    Article  PubMed  CAS  Google Scholar 

  9. Losa C, Marchal-Heussler L, Orallo F, Jato JLV, Alonso MJ. Design of new formulations for topical ocular administration: polymeric nanocapsules containing metipranolol. Pharm Res. 1993;10:80–7.

    Article  CAS  PubMed  Google Scholar 

  10. Marchal-Heussler L, et al. Colloidal drug delivery systems for the eye. A comparison of the efficacy of three different polymers: polyisobutylcyanoacrylate polylactic-co-glycolic, acidpolyepsilon-caprolacton. STP Pharma Sci. 1992;2:98–104.

    CAS  Google Scholar 

  11. Nagarwal RC, Singh PN, Kant S, Maiti P, Pandit JK. Chitosan coated PLA nanoparticles for ophthalmic delivery: characterization, in-vitro and in-vivo study in rabbit eye. J Biomed Nanotechnol. 2010;6:648–57.

    Article  CAS  PubMed  Google Scholar 

  12. Salama AH, Abdelkhalek AA, Elkasabgy NA. Etoricoxib-loaded bio-adhesive hybridized polylactic acid-based nanoparticles as an intra-articular injection for the treatment of osteoarthritis. Int J Pharm. 2020;578:119081.

    Article  CAS  PubMed  Google Scholar 

  13. Salama AH, Elmotasem H, Salama AA. Nanotechnology based blended chitosan-pectin hybrid for safe and efficient consolidative antiemetic and neuro-protective effect of meclizine hydrochloride in chemotherapy induced emesis. Int J Pharm. 2020;584:119411.

    Article  CAS  PubMed  Google Scholar 

  14. Szymanska E, et al. Vaginal chitosan tablets with clotrimazole-design and evaluation of mucoadhesive properties using porcine vaginal mucosa, mucin and gelatine. Chem Pha rm Bull (Tokyo). 2014;62(2):160–7.

    Article  CAS  Google Scholar 

  15. Niwa T, Takeuchi H, Hino T, Kunou N, Kawashima Y. In vitro drug release behavior of D,L-lactide/glycolide copolymer (PLGA) nanospheres with nafarelin acetate prepared by a novel spontaneous emulsification solvent diffusion method. J Pharm Sci. 1994;83(5):727–32.

    Article  CAS  PubMed  Google Scholar 

  16. Alvarez-Alvarez L, et al. Hydrocortisone loaded poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) nanoparticles for topical ophthalmic administration: preparation, characterization and evaluation of ophthalmic toxicity. Int J Pharm. 2019;568:118519.

    Article  CAS  PubMed  Google Scholar 

  17. Youssef N, et al. A novel nasal almotriptan loaded solid lipid nanoparticles in mucoadhesive in situ gel formulation for brain targeting: preparation, characterization and in vivo evaluation. Int J Pharm. 2018;548(1):609–24.

    Article  CAS  PubMed  Google Scholar 

  18. Basha M, AbouSamra MM, Awad GA, Mansy SS. A potential antibacterial wound dressing of cefadroxil chitosan nanoparticles in situ gel: fabrication, in vitro optimization and in vivo evaluation. Int J Pharm. 2018;544(1):129–40.

    Article  CAS  PubMed  Google Scholar 

  19. Souto EB, Mehnert W, Muller RH. Polymorphic behaviour of Compritol888 ATO as bulk lipid and as SLN and NLC. J Microencapsul. 2006;23(4):417–33.

    Article  CAS  PubMed  Google Scholar 

  20. Ghadiri M, Fatemi S, Vatanara A, Doroud D, Najafabadi AR, Darabi M, et al. Loading hydrophilic drug in solid lipid media as nanoparticles: statistical modeling of entrapment efficiency and particle size. Int J Pharm. 2012;424(1–2):128–37.

    Article  CAS  PubMed  Google Scholar 

  21. Salama AH, Shamma RN. Tri/tetra-block co-polymeric nanocarriers as a potential ocular delivery system of lornoxicam: in-vitro characterization, and in-vivo estimation of corneal permeation. Int J Pharm. 2015;492:28–39.

    Article  CAS  PubMed  Google Scholar 

  22. Mittal N, Kaur G. Leucaena leucocephala (Lam.) galactomannan nanoparticles: optimization and characterization for ocular delivery in glaucoma treatment. Int J Biol Macromol. 2019;139:1252–62.

    Article  CAS  PubMed  Google Scholar 

  23. Gonzalez-Pizarro R, Silva-Abreu M, Calpena AC, Egea MA, Espina M, García ML. Development of fluorometholone-loaded PLGA nanoparticles for treatment of inflammatory disorders of anterior and posterior segments of the eye. Int J Pharm. 2018;547(1–2):338–46.

    Article  CAS  PubMed  Google Scholar 

  24. Yang SC, Lu LF, Cai Y, Zhu JB, Liang BW, Yang CZ. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J Control Release. 1999;59(3):299–307.

    Article  CAS  PubMed  Google Scholar 

  25. Marslin G, Revina AM, Khandelwal VKM, Balakumar K, Sheeba CJ, Franklin G. PEGylated ofloxacin nanoparticles render strong antibacterial activity against many clinically important human pathogens. Colloids Surf B: Biointerfaces. 2015;132:62–70.

    Article  CAS  PubMed  Google Scholar 

  26. Rani D, Ahuja M. Carboxymethylation of Lepidium sativum polyuronide, its characterization and evaluation as a nanometric carrier. Int J Biol Macromol. 2017;99:233–40.

    Article  CAS  PubMed  Google Scholar 

  27. Ustundag-Okur N, et al. Preparation and in vitro-in vivo evaluation of ofloxacin loaded ophthalmic nano structured lipid carriers modified with chitosan oligosaccharide lactate for the treatment of bacterial keratitis. Eur J Pharm Sci. 2014;63:204–15.

    Article  CAS  PubMed  Google Scholar 

  28. Somaia AA, et al. Metabolic profiling of a polyphenolic-rich fraction of Coccinia grandis leaves using LC-ESI-MS/MS and in vivo validation of its antimicrobial and wound healing activities. Food Funct. 2019.

  29. AbouSamra MM, Salama AH. Enhancement of the topical tolnaftate delivery for the treatment of tinea pedis via provesicular gel systems. J Liposome Res. 2017;27(4):324–34.

    Article  CAS  PubMed  Google Scholar 

  30. Hopwood D. Fixatives and fixation: a review. Histochem J. 1969;1(4):323–60.

    Article  CAS  PubMed  Google Scholar 

  31. Aldebasi YH, Mohamed HA, Aly SM. Histopathological studies on rabbits infected by bacteria causing infectious keratitis in human through eye inoculation. Int J Health Sci (Qassim). 2014;8(3):257–67.

    Google Scholar 

  32. Khalil RM, et al. Preparation and characterization of nystatin loaded solid lipid nanoparticles for topical delivery. Int J Pharm Sci Res. 2013;4:2292–300.

    CAS  Google Scholar 

  33. Lima FV, Mendes C, Zanetti-Ramos BG, Nandi JK, Cardoso SG, Bernardon JK, et al. Carbamide peroxide nanoparticles for dental whitening application: characterization, stability and in vivo/in situ evaluation. Colloids Surf B: Biointerfaces. 2019;179:326–33.

    Article  CAS  PubMed  Google Scholar 

  34. Reich G. In vitro stability of poly(D,L-lactide) and poly(D,L-lactide)/poloxamer nanoparticles in gastrointestinal fluids. Drug Dev Ind Pharm. 1997;23:1191–8.

    Article  CAS  Google Scholar 

  35. Fontana G, Pitarresi G, Tomarchio V, Carlisi B, San Biagio PL. Preparation, characterization and in vitro antimicrobial activity of ampicillin-loaded polyethylcyanoacrylate nanoparticles. Biomaterials. 1998;19:1009–17.

    Article  CAS  PubMed  Google Scholar 

  36. Palacio J, Orozco VH, López BL. Effect of the molecular weight on the physicochemical properties of poly(lactic acid) nanoparticles and on the amount of ovalbumin adsorption. J Braz Chem Soc. 2011;22(12):2304–11.

    CAS  Google Scholar 

  37. Salama AH, Mahmoud AA, Kamel R. A novel method for preparing surface-modified fluocinolone acetonide loaded PLGA nanoparticles for ocular use: in vitro and in vivo evaluations. AAPS PharmSciTech. 2016;17(5):1159–72.

    Article  CAS  PubMed  Google Scholar 

  38. Matloub AA, AbouSamra MM, Salama AH, Rizk MZ, Aly HF, Fouad GI. Cubic liquid crystalline nanoparticles containing a polysaccharide from Ulva fasciata with potent antihyperlipidaemic activity. Saudi Pharm J. 2018;26(2):224–31.

    Article  PubMed  Google Scholar 

  39. Matloub AA, Salama AH, Aglan HA, AbouSamra MM, ElSouda SSM, Ahmed HH. Exploiting bilosomes for delivering bioactive polysaccharide isolated from Enteromorpha intestinalis for hacking hepatocellular carcinoma. Drug Dev Ind Pharm. 2018;44(4):523–34.

    Article  CAS  PubMed  Google Scholar 

  40. Mahmoud AA, Salama AH, Shamma RN, Farouk F. Bioavailability enhancement of aripiprazole via silicosan particles: preparation, characterization and in vivo evaluation. AAPS PharmSciTech. 2018;19(8):3751–62.

    Article  CAS  PubMed  Google Scholar 

  41. Kumari A, Yadav SK, Pakade YB, Singh B, Yadav SC. Development of biodegradable nanoparticles for delivery of quercetin. Colloids Surf B: Biointerfaces. 2010;80(2):184–92.

    Article  CAS  PubMed  Google Scholar 

  42. Ammar HO, Ghorab M, Kamel R, Salama AH. Design and optimization of gastro-retentive microballoons for enhanced bioavailability of cinnarizine. Drug Deliv Transl Res. 2016;6(3):210–24.

    Article  CAS  PubMed  Google Scholar 

  43. Ammar HO, Ghorab M, Kamel R, Salama AH. A trial for the design and optimization of pH-sensitive microparticles for intestinal delivery of cinnarizine. Drug Deliv Transl Res. 2016;6(3):195–209.

    Article  CAS  PubMed  Google Scholar 

  44. Salama AH, Basha M, El Awdan S. Experimentally designed lyophilized dry emulsion tablets for enhancing the antihyperlipidemic activity of atorvastatin calcium: preparation, in-vitro evaluation and in-vivo assessment. Eur J Pharm Sci. 2018;112:52–62.

    Article  CAS  PubMed  Google Scholar 

  45. Kulkarni AR, Soppimath KS, Aminabhavi TM, Rudzinski WE. In-vitro release kinetics of cefadroxil-loaded sodium alginate interpenetrating network beads. Eur J Pharm Biopharm. 2001;51(2):127–33.

    Article  CAS  PubMed  Google Scholar 

  46. Kumar S, Himmelstein KJ. Modification of in situ gelling behavior of carbopol solutions by hydroxypropyl methylcellulose. J Pharm Sci. 1995;84:344–8.

    Article  CAS  PubMed  Google Scholar 

  47. Kundu PP, Kundu M. Polymer, vol. 42; 2001. p. 2015.

    Google Scholar 

  48. Marinal KB, et al. In situ fast gelling formulation of methyl cellulose for in vitro ophthalmic controlled delivery of ketorolac tromethamine. J Appl Polym Sci. 2009;113:241–1246.

    Google Scholar 

  49. Kaur IP, Kanwar M. Ocular preparations: the formulation approach. Drug Dev Ind Pharm. 2002;28(5):473–93.

    Article  CAS  PubMed  Google Scholar 

  50. Ammar HO, Salama HA, Ghorab M, Mahmoud AA. Nanoemulsion as a potential ophthalmic delivery system for dorzolamide hydrochloride. AAPS PharmSciTech. 2009;10(3):808–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Singh J, Chhabra G, Pathak K. Development of acetazolamide-loaded, pH-triggered polymeric nanoparticulate in situ gel for sustained ocular delivery: in vitro. Ex vivo evaluation and pharmacodynamic study. Drug Dev Ind Pharm. 2014;40(9):1223–32.

    Article  CAS  PubMed  Google Scholar 

  52. Chawla V, Saraf SA. Rheological studies on solid lipid nanoparticle based carbopol gels of aceclofenac. Colloids Surf B: Biointerfaces. 2012;92:293–8.

    Article  CAS  PubMed  Google Scholar 

  53. Kanahaiya I, et al. In-situ gel formation for ocular drug delivery system an overview. Asian J Biomed Pharm Sci. 2011;1:1–7.

    Google Scholar 

  54. Kaur IP, Garg A, Singla AK, Aggarwal D. Vesicular systems in ocular drug delivery: an overview. Int J Pharm. 2004;269(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  55. Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discov Today. 2008;13(3–4):144–51.

    Article  CAS  PubMed  Google Scholar 

  56. Bucolo C, Drago F, Salomone S. Ocular drug delivery: a clue from nanotechnology. Front Pharmacol. 2012;3:188.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ameeduzzafar, et al. Formulation and optimization of levofloxacin loaded chitosan nanoparticle for ocular delivery: in-vitro characterization, ocular tolerance and antibacterial activity. Int J Biol Macromol. 2018;108:650–9.

    Article  CAS  PubMed  Google Scholar 

  58. Gestri G, Link BA, Neuhauss SC. The visual system of zebrafish and its use to model human ocular diseases. Dev Neurobiol. 2012;72(3):302–27.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jansook P, Ogawa N, Loftsson T. Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. Int J Pharm. 2018;535(1–2):272–84.

    Article  CAS  PubMed  Google Scholar 

  60. Hao J, Wang X, Bi Y, Teng Y, Wang J, Li F, et al. Fabrication of a composite system combining solid lipid nanoparticles and thermosensitive hydrogel for challenging ophthalmic drug delivery. Colloids Surf B: Biointerfaces. 2014;114:111–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the National Research Centre through a grant (No: 11010301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona M. AbouSamra.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salama, A.H., AbouSamra, M.M., Awad, G.E.A. et al. Promising bioadhesive ofloxacin-loaded polymeric nanoparticles for the treatment of ocular inflammation: formulation and in vivo evaluation. Drug Deliv. and Transl. Res. 11, 1943–1957 (2021). https://doi.org/10.1007/s13346-020-00856-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00856-8

Keywords

Navigation