Skip to main content

Advertisement

Log in

Ocular films versus film-forming liquid systems for enhanced ocular drug delivery

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The short residence time, corneal barrier functions, and other effective eye protective mechanisms limited the ocular availability after topical application. Ocular inserts are being developed as polymer films for insertion into the conjunctival sac with the goal of increasing ocular availability. Unfortunately, these devices are not convenient for patients and are associated with many problems. The use of in situ gel/film-forming systems may provide promising alternative with comparable efficacy but this requires verification. Therefore, the current study compared ocular inserts with in situ film-forming liquids containing the same polymer components for ocular delivery of pilocarpine nitrate. Solvent casting technique was employed to prepare the inserts using and polyvinyl alcohol (PVA) as film-forming polymer blended with sodium alginate, as bioadhesive polymer. The effect of addition of either carboxymethycellulose, carbopol, polyvinylpyrrolidone, or methylcellulose was investigated. Solid-state characterization of the inserts indicated compatibility of the drug with film component. All inserts were of acceptable bioadhesive parameters and folding endurance that depended on the film composition. In vitro release studies reflected matrix diffusion kinetics for the film and liquid formulations. This confirms the in situ gelation of liquids. The calculated in vivo miotic pharmacokinetics parameters, using albino rabbits, reflected a better rank for the film but the difference was not statistically different from the in situ gel/film-forming systems. Ocular safety, as reflected by tear volume test, indicated acceptable safety of both liquid and inserts to the eye. The study suggested comparable efficacy of film-forming liquids to that of ocular films.

Graphical abstract

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wilson CG, Zhu YP, Frier M, Rao LS, Gilchrist P, Perkins AC, et al. Ocular contact time of a carbomer gel (GelTears) in humans. Br J Ophthalmol. 1998;82(10):1131–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mundada AS, Shrikhande BK. Design and evaluation of soluble ocular drug insert for controlled release of ciprofloxacin hydrochloride. Drug Dev Ind Pharm. 2006;32(4):443–8.

    Article  CAS  PubMed  Google Scholar 

  3. Ali Y, Lehmussaari K. Industrial perspective in ocular drug delivery. Adv Drug Deliv Rev. 2006;58(11):1258–68.

    Article  CAS  PubMed  Google Scholar 

  4. Arici MK, Arici DS, Topalkara A, Guler C. Adverse effects of topical antiglaucoma drugs on the ocular surface. Clin Exp Ophthalmol. 2000;28(2):113–7.

    Article  CAS  PubMed  Google Scholar 

  5. Hornof M, Weyenberg W, Ludwig A, Bernkop-Schnurch A. Mucoadhesive ocular insert based on thiolated poly(acrylic acid): development and in vivo evaluation in humans. J Control Release. 2003;89(3):419–28.

    Article  CAS  PubMed  Google Scholar 

  6. Miller SC, Donovan MD. Effect of poloxamer gel on the miotic activity of pilocarpine nitrate in rabbits. Int J Pharm. 1982;12:147–52.

    Article  CAS  Google Scholar 

  7. Gurny R, Boye T, Ibrahim H. Ocular therapy with nanoparticulate systems for controlled drug delivery. J Control Release. 1985;2:353–61.

    Article  CAS  Google Scholar 

  8. Zhidong L, Jiawei L, Shufang N, Hui L, Pingtian D, Weisan P. Study of an alginate/HPMC based in situ gelling ophthalmic delivery system for gatifloxacin. Int J Pharm. 2006;315:12–7.

    Article  CAS  Google Scholar 

  9. Calvo P, Vila-Jato JL, Alonso MJ. Evaluation of cationic polymercoated nanocapsules as ocular drug carriers. Int J Pharm. 1997;153:41–50.

    Article  CAS  Google Scholar 

  10. Vyas SP, Mysore N, Jaitley V, Venkatesan N. Niosome based controlled ocular delivery of timolol maleate. Pharmazie. 1998;53:466–9.

    CAS  PubMed  Google Scholar 

  11. Pignatello R, Bucolo C, Ferrara P, Maltese A, Puleo A, Puglisi G, et al. Eudragit RS100® nanosuspensions for the ophthalmic controlled delivery of ibuprofen. Eur J Pharm Sci. 2002;16:53–61.

    Article  CAS  PubMed  Google Scholar 

  12. Aggarwal D, Kaur IP. Improved pharmacodynamics of timolol maleate from a mucoadhesive niosomal ophthalmic drug delivery system. Int J Pharm. 2005;290:155–9.

    Article  CAS  PubMed  Google Scholar 

  13. Hoare TR, Koane DS. Hydrogels in drug delivery: progress and challenges. Polymer. 2008;49:1993–2007.

    Article  CAS  Google Scholar 

  14. Unterman SR, Rootman DS, Hill JM, Parelman JJ, Thompsom HW, Kaufman HE, et al. Collagen shield drug delivery: therapeutic concentrations of tobramycin in the rabbit cornea and aqueous humor. J Cataract Refract Surg. 1988;14:500–5004.

    Article  CAS  PubMed  Google Scholar 

  15. Kaufman HE, Stuinemann TL, Lehman E, Thompson HW, Varnell ED, Jacob-Labarre JT, et al. Collagen-based drug delivery and artificial tears. J Ocul Pharmacol. 1994;10(1):17–27.

    Article  CAS  PubMed  Google Scholar 

  16. Qi H, Chen W, Huang C, Li L, Chen C, Li W, et al. Development of a poloxamer analogs/carbopol-based in situ gelling and mucoadhesive ophthalmic delivery system for puerarin. Int J Pharm. 2007;337(1–2):178–87.

    Article  CAS  PubMed  Google Scholar 

  17. Saettone MF, Salminen L. Ocular inserts for topical delivery. Adv Drug Deliv Rev. 1995;16:95–106.

    Article  CAS  Google Scholar 

  18. Koelwel C, Rothschenk S, Fuchs-Koelwel B, Gabler B, Lohmann C, Gopferich A, et al. Alginate inserts loaded with epidermal growth factor for the treatment of keratoconjunctivitis sicca. Pharm Dev Technol. 2008;13(3):221–31.

    Article  CAS  PubMed  Google Scholar 

  19. Kulhari H, Pooja D, Narayan H, Meena L, Prajapati SK. Design and evaluation of ocusert for controlled delivery of flurbiprofen sodium. Curr Eye Res. 2011;36(5):436–41.

    Article  CAS  PubMed  Google Scholar 

  20. Semalty M, Semalty A, Kumar G. Formulation and characterization of mucoadhesive buccal films of glipizide. Indian J Pharm Sci. 2008;70:43–8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shivakumar HN, Desai BG, Subhash PG, Ashok P, Hulakoti B. Design of ocular inserts of brimonidine tartrate by response surface methodology. J Drug Del Sci Tech. 2007;17(6):421–30.

    Article  CAS  Google Scholar 

  22. El Maghraby GM, Abdelzaher MM. Formulation and evaluation of simvastatin buccal film. J App PharmSci. 2015;5(04):70–7.

    Google Scholar 

  23. Mamdouh M, Donia A, Essa E, Maghraby GE. Preparation of liquid oral mucoadhesive gastro-retentive system of nimodipin. Cur Drug Deliv. 2019;16(9):862–71.

    Article  CAS  Google Scholar 

  24. Habib F, Abdel Azeem M, Fetih G, Safwat M. Mucoadhesive buccal patches of lornoxicam. Bull Pharm Sci. 2010;33(1):59–68.

    CAS  Google Scholar 

  25. Chan J, El Maghraby GM, Craig JP, Alany RG. Phase transition water-in-oil microemulsions as ocular drug delivery systems: in vitro and in vivo evaluation. Int J Pharm. 2007;328:65–71.

    Article  CAS  PubMed  Google Scholar 

  26. Chan J, El Maghraby GM, Craig JP, Alany RG. Effect of water-in-oil microemulsions and lamellar liquid crystalline systems on the precorneal tear film of albino New Zealand rabbits. Clin Ophthalmol. 2008;2(1):129–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Elagamy HI, Essa EA, Nouh A, El Maghraby GM. Development and evaluation of rapidly dissolving buccal films of naftopidil: in vitro and in vivo evaluation. Drug Dev Ind Pharm. 2019;45(10):1695–706.

    Article  CAS  PubMed  Google Scholar 

  28. Gilhotra RM, Gilhotra N, Mishra DN. Piroxicam bioadhesive ocular inserts: physicochemical characterization and evaluation in prostaglandin-induced inflammation. Curr Eye Res. 2009;34(12):1065–73.

    Article  CAS  PubMed  Google Scholar 

  29. Saettone MF, Giannaccini B, Chetoni P, Galli G, Chiellini E. Polymeric ophthalmic drug delivery systems: preparation and evaluation of pilocarpine-containing inserts. In: Chiellini E, Giusti P, editors. Polymers in medicine, biomedical and pharmacological applications. Springer, Plenum press, New York and London; 1983. p. 187–200.

  30. Abdelkader H, Pierscionek B, Alany RG. Novel in situ gelling ocular films for the opioid growth factor-receptor antagonist-naltrexone hydrochloride: fabrication, mechanical properties, mucoadhesion, tolerability and stability studies. Int J Pharm. 2014;14437:1–12.

    Google Scholar 

  31. Lin SY, Yu HL. Thermal stability of methacrylic acid copolymers of Eudragits L, S, and L30D and the acrylic acid polymer of Carbopol. J Pol Sci Pol Chem. 1999;37:2061–7.

    Article  CAS  Google Scholar 

  32. Aburahma MH, Mahmoud AA. Biodegradable ocular inserts for sustained delivery of brimonidine tartarate: preparation and in vitro/in vivo evaluation. AAPS Pharm Sci Tech. 2011;12(4):1335–47.

    Article  CAS  Google Scholar 

  33. Wang X, Zhang Y, Huang J, Tian C, Xia M, Liu L, et al. A novel phytantriol-based lyotropic liquid crystalline gel for efficient ophthalmic delivery of pilocarpine nitrate. AAPS PharmSciTech. 2019;20(1):32.

    Article  PubMed  CAS  Google Scholar 

  34. Mansur HS, Orefice RL, Mansur AAP. Characterization of polyvinyl alcohol/poly ethylene glycol hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer. 2004;45:7193–202.

    Article  CAS  Google Scholar 

  35. Kondo T, Sawatari C, Manley RS, Gray DG. Characterization of hydrogen bonding in cellulose-synthetic polymer blend systems with regioselectively substituted methylcellulose. Macromolecules. 1994;27:210–5.

    Article  CAS  Google Scholar 

  36. La Wrie G, Keen I, Drew B, Temple AC, Rintoul L, Fredericks P, et al. Interactions between alginate and chitosan biopolymers cgaracterized using FTIR and XPS. Biomacromolecules. 2007;8:2533–41.

    Article  CAS  Google Scholar 

  37. Park SH, Chun MK, Choi HK. Preparation of an extended-release matrix tablet using chitosan/Carbopol interpolymer complex. Int J Pharm. 2008;347:39–44.

    Article  CAS  PubMed  Google Scholar 

  38. Akram MR, Ahmad M, Abrar A, Sarfraz RM, Mahmood A. Formulation design and development of matrix diffusion controlled transdermal drug delivery of glimepiride. Drug Des Dev Ther. 2018;12:349–64.

    Article  CAS  Google Scholar 

  39. Khodaverdi E, Tekie FSM, Mohajeri SA, Ganji F, Zohuri G, Hadizadeh F, et al. Preparation and investigation of sustained drug delivery systems using an injectable, thermosensitive, in situ forming hydrogel composed of PLGA–PEG–PLGA. AAPS PharmSciTech. 2012;13(2):590–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Perioli L, Ambrogi V, Angelici F, Ricci M, Giovagnoli S, Capuccella M, et al. Development of mucoadhesive patches for buccal administration of ibuprofen. J Control Release. 2004;99:73–82.

    Article  CAS  PubMed  Google Scholar 

  41. Destruel PL, Zeng N, Seguin J, Douat S, Rosa F, Baudouin FB, et al. Novel in situ gelling ophthalmic drug delivery system based on gellan gum and hydroxyethylcellulose: innovative rheological characterization, in vitro and in vivo evidence of a sustained precorneal retention time. Int J Pharm. 2020;574:118734.

    Article  CAS  PubMed  Google Scholar 

  42. Gupta S, Vyas SP. Carbopol/chitosan based pH triggered in situ gelling system for ocular delivery of timolol maleate. Sci Pharm. 2010;78:959–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bhalerao H, Koteshwara KB, Chandran S. Levofloxacin hemihydrate in situ gelling ophthalmic solution: formulation optimization and in vitro and in vivo evaluation. AAPS PharmSciTech. 2019;20(7):272.

    Article  PubMed  CAS  Google Scholar 

  44. Rathod LV, Kapadia R, Sawant KK. Anovel nanoparticles impregnated ocular insert for enhanced bioavailability to posterior segment of eye: in vitro, in vivo and stability studies. Mater Sci Eng C. 2017;71:529–40.

    Article  CAS  Google Scholar 

  45. Franca JR, Foureaux G, Fuscaldi LL, Ribeiro TG, Castilho RO, Yoshida MI, et al. Chitosan/hydroxyethyl cellulose inserts for sustained-release of dorzolamide for glaucoma treatment: in vitro and in vivo evaluation. Int J Pharm. 2019;570:118662.

    Article  CAS  PubMed  Google Scholar 

  46. Rupenthal ID, Green CR, Alany RG. Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 2: precorneal retention and in vivo pharmacodynamic study. Int J Pharm. 2011;411:78–85.

    Article  CAS  PubMed  Google Scholar 

  47. Leighton J, Nassauer J, Tchao R. The chick embryo in toxicology: an alternative to the rabbit eye. Food Chem Toxicol. 1985;23:293–8.

    Article  CAS  PubMed  Google Scholar 

  48. Tsubota K, Monden Y, Yagi Y. New treatment of dry eye: the effect of calcium ointment through eyelid skin delivery. Br J Ophthalmol. 1999;83:767–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebtessam A. Essa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wafa, H.G., Essa, E.A., El-Sisi, A.E. et al. Ocular films versus film-forming liquid systems for enhanced ocular drug delivery. Drug Deliv. and Transl. Res. 11, 1084–1095 (2021). https://doi.org/10.1007/s13346-020-00825-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00825-1

Keywords

Navigation