Skip to main content
Log in

Labeling PLA-PEG nanocarriers with IR780: physical entrapment versus covalent attachment to polylactide

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Near-infrared fluorescent dyes, such as IR780, are promising theranostics, acting as photosensitizers for photodynamic therapy and in vivo tracers in image-guided diagnosis. This work compared the uptake by macrophage-like cells of IR780 either physically associated or covalently attached to poly(D,L-lactide) (PLA) formulated as polymeric nanocapsules (NC) from a blend of PLA homopolymer and PLA-PEG block copolymer. The physicochemical characterization of both NC was conducted using asymmetric flow field-flow fractionation (AF4) analysis with static and dynamic light scattering and atomic force microscopy. The interaction of IR780 with serum proteins was evidenced by AF4 with fluorescence detection and flow cytometry in cell uptake studies. The average diameters of NC were around 120 nm and zeta potentials close to -40 mV for all NC. NC uptake by cells in different media and experimental conditions shows significantly lower fluorescence intensities for IR780 covalently linked to PLA and correspondingly low quantitative uptake. Different mechanisms of internalization were evidenced depending on the IR780 type of association to NC. Serum proteins mediate IR780 interaction with cells in a dose-dependent manner. Our results show that non-covalently linked IR780 was released from NC and accumulated in macrophage cells. Oppositely, IR780 conjugated to PLA provides stable association with NC, and its fluorescence is representative of cell uptake of the nanocarrier itself. This work strongly reinforces the importance of covalent attachment of a fluorescence dye such as IR780 to the nanocarrier to study their interaction with cells in vitro and to obtain reliable tracking in image-guided therapy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Misra R, Acharya S, Sahoo SK. Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov Today Elsevier Ltd. 2010;15:842–50.

    Article  CAS  Google Scholar 

  2. Chen S, Zhang Q, Hou Y, Zhang J, Liang XJ. Nanomaterials in medicine and pharmaceuticals: nanoscale materials developed with less toxicity and more efficacy. Eur J Nanomedicine. 2013;5:61–79.

    Article  Google Scholar 

  3. Sinha A, Shaporev A, Nosoudi N, Lei Y, Vertegel A, Lessner S, et al. Nanoparticle targeting to diseased vasculature for imaging and therapy. Nanomedicine Nanotechnology, Biol Med [Internet]. Elsevier Inc. 2014;10:1003–12. https://doi.org/10.1016/j.nano.2014.02.002.

    Article  CAS  Google Scholar 

  4. Gupta AS. Nanomedicine approaches in vascular disease : a review. Nanomedicine Nanotechnology, Biol Med [Internet]. Elsevier Inc. 2011;7:763–79. https://doi.org/10.1016/j.nano.2011.04.001.

    Article  CAS  Google Scholar 

  5. Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev. 2013;42:1147–235.

    Article  CAS  Google Scholar 

  6. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. Elsevier B.V. 2014;66:2–25.

    Article  CAS  Google Scholar 

  7. Kuang Y, Zhang K, Cao Y, Chen X, Wang K, Liu M, et al. Hydrophobic IR-780 Dye encapsulated in cRGD-conjugated solid lipid nanoparticles for NIR imaging-guided photothermal therapy. ACS Appl Mater Interfaces. 2017;9:12217–26.

    Article  CAS  Google Scholar 

  8. Banik BL, Fattahi P, Brown JL. Polymeric nanoparticles: the future of nanomedicine. Nanomed Nanobiotechnol. 2016;8:271–99.

    Article  Google Scholar 

  9. Yi X, Wang F, Qin W, Yang X, Yuan J. Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field. Int J Nanomedicine. 2014;14:1347–65.

    Article  Google Scholar 

  10. Luo S, Zhang E, Su Y, Cheng T, Shi C. A review of NIR dyes in cancer targeting and imaging. Biomaterials [Internet]. Elsevier Ltd. 2011;32:7127–38. https://doi.org/10.1016/j.biomaterials.2011.06.024.

    Article  CAS  Google Scholar 

  11. Zhang E, Luo S, Tan X, Shi C. Mechanistic study of IR-780 dye as a potential tumor targeting and drug delivery agent. Biomaterials [Internet]. Elsevier Ltd. 2014;35:771–8. https://doi.org/10.1016/j.biomaterials.2013.10.033.

    Article  CAS  Google Scholar 

  12. Dolmans DEJGJ, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3:380.

    Article  CAS  Google Scholar 

  13. Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kedzierska E, Knap-czop K, et al. Photodynamic therapy – mechanisms, photosensitizers and combinations. Biomed Pharmacother. 2018;106:1098–107.

    Article  CAS  Google Scholar 

  14. Wang K, Zhang Y, Wang J, Yuan A, Sun M, Wu J, et al. Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Sci Rep [Internet]. Nat Publ Group. 2016;6:27421–32 Available from: http://www.nature.com/articles/srep27421.

    Google Scholar 

  15. Alves CG, Lima-sousa R, Melo-diogo D, De Louro RO. IR780 based nanomaterials for cancer imaging and photothermal, photodynamic and combinatorial therapies. Int J Pharm [Internet]. Elsevier. 2018;542:164–75. https://doi.org/10.1016/j.ijpharm.2018.03.020.

    Article  CAS  Google Scholar 

  16. Attili-qadri S, Karra N, Nemirovski A, Schwob O, Talmon Y, Nassar T. Oral delivery system prolongs blood circulation of docetaxel nanocapsules via lymphatic absorption. PNAS. 2013;110:17498–503.

    Article  CAS  Google Scholar 

  17. Branquinho RT, Pound-lana G, Milagre MM, Saú DA, Mário J, Vilela C, et al. Increased body exposure to new anti-trypanosomal through nanoencapsulation. Sci Rep. 2017;7:1–12.

    Article  Google Scholar 

  18. De Paula CS, Tedesco AC, Primo FL, Vilela JMC, et al. Chloroaluminium phthalocyanine polymeric nanoparticles as photosensitisers: photophysical and physicochemical characterisation, release and phototoxicity in vitro. Eur J Pharm Sci [Internet]. Elsevier B.V. 2013;49:371–81. https://doi.org/10.1016/j.ejps.2013.03.011.

  19. Bastiat G, Oliver C, Roider C, Fouchet F, Lignières E, Jesacher A, et al. A new tool to ensure the fluorescent dye labeling stability of nanocarriers : a real challenge for fluorescence imaging. J Control Release [Internet]. Elsevier B.V. 2013;170:334–42. https://doi.org/10.1016/j.jconrel.2013.06.014.

    Article  CAS  Google Scholar 

  20. Li S, Johnson J, Peck A, Xie Q. Near infrared fluorescent imaging of brain tumor with IR780 dye incorporated phospholipid nanoparticles. J Transl Med [Internet]. 2017;15:18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28114956%5Cn, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5260002

  21. Mazzarino L, Silva LFC, Curta JC, Licinio MA, Costa A, Pacheco LK, et al. Curcumin-loaded lipid and polymeric nanocapsules stabilized by nonionic surfactants: an in vitro and in vivo antitumor activity on B16-F10 melanoma and macrophage uptake comparative study. J Biomed Nanotechnol. 2011;7:406–14.

    Article  CAS  Google Scholar 

  22. Pais-Silva C, de Melo-Diogo D, Correia IJ. IR780-loaded TPGS-TOS micelles for breast cancer photodynamic therapy. Eur J Pharm Biopharm. 2017;113:108–17.

    Article  CAS  Google Scholar 

  23. Bazylińska U, Lewińska A, Lamch Ł, Wilk KA. Polymeric nanocapsules and nanospheres for encapsulation and long sustained release of hydrophobic cyanine-type photosensitizer. Colloids Surfaces A Physicochem Eng Asp. 2014;442:42–9.

    Article  Google Scholar 

  24. Li H, Wang K, Yang X, Zhou Y, Ping Q, Oupicky D, et al. Dual-function nanostructured lipid carriers to deliver IR780 for breast cancer treatment: anti-metastatic and photothermal anti-tumor therapy. Acta Biomater [Internet]. Acta Materialia Inc. 2017;53:399–413. https://doi.org/10.1016/j.actbio.2017.01.070.

    Article  CAS  Google Scholar 

  25. Jiang C, Cheng H, Yuan A, Tang X, Wu J, Hu Y. Hydrophobic IR780 encapsulated in biodegradable human serum albumin nanoparticles for photothermal and photodynamic therapy. Acta Biomater [Internet]. Acta Materialia Inc. 2015;14:61–9. https://doi.org/10.1016/j.actbio.2014.11.041.

    Article  CAS  Google Scholar 

  26. Palao-suay R, Martin-saavedra FM, Aguilar MR, Duch CE, Parra-ruiz FJ, Rohner NA, et al. Photothermal and photodynamic activity of polymeric nanoparticles based on α-tocopheryl succinate-RAFT block copolymers conjugated to IR-780. Acta Biomater. 2018;15:70–84.

    Google Scholar 

  27. Yuan A, Qiu X, Tang X, Liu W, Wu J, Hu Y. Self-assembled PEG-IR-780-C13 micelle as a targeting, safe and highly-effective photothermal agent for in vivo imaging and cancer therapy. Biomaterials [Internet]. Elsevier Ltd. 2015;51:184–93. https://doi.org/10.1016/j.biomaterials.2015.01.069.

    Article  CAS  Google Scholar 

  28. Pound-Lana G, Garcia GM, Trindade IC, Capelari-oliveira P, Pontifice TG, Vilela JMC, et al. Phthalocyanine photosensitizer in polyethylene glycol-block- poly(lactide-co-benzyl glycidyl ether) nanocarriers: probing the contribution of aromatic donor-acceptor interactions in polymeric nanospheres. Mater Sci Eng C [Internet]. Elsevier B.V. 2018;94:220–33. https://doi.org/10.1016/j.msec.2018.09.022.

    Article  CAS  Google Scholar 

  29. de Oliveira MA, Machado MGC, Silva SED, Nascimento TL, Lima EM, Pound-lana G, et al. IR780-polymer conjugates for stable near-infrared labeling of biodegradable polyester-based nanocarriers. Eur Polym J [Internet]. Elsevier. 2019;120:109255. https://doi.org/10.1016/j.eurpolymj.2019.109255.

    Article  CAS  Google Scholar 

  30. Pound-Lana G, Rabanel JM, Hildgen P, Mosqueira VCF. Functional polylactide via ring-opening copolymerisation with allyl, benzyl and propargyl glycidyl ethers. Eur Polym J [Internet]. Elsevier. 2017;90:344–53. https://doi.org/10.1016/j.eurpolymj.2017.03.028.

    Article  CAS  Google Scholar 

  31. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55:1–4.

    Article  Google Scholar 

  32. ICH. Guideline Q2(R1), Validation of Analytical Procedures: Text and Methodology. In: International Conference on Harmonisation, IFPMA, Geneva, Switzerland; 2005.

    Google Scholar 

  33. Zhou Y, He C, Chen K, Ni J, Cai Y, Guo X, et al. A new method for evaluating actual drug release kinetics of nanoparticles inside dialysis devices via numerical deconvolution. J Control Release. Elsevier B.V. 2016;243:11–20.

    Article  CAS  Google Scholar 

  34. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article  CAS  Google Scholar 

  35. Mosqueira VC, Legrand P, Gref R, Heurtault B, Appel M, Barratt G. Interactions between a Macrophage Cell Line (J774A1) and Surface-modified Poly(D,L-lactide) Nanocapsules Bearing Poly(ethylene glycol). J Drug Target. 1999;7:65–78.

    Article  CAS  Google Scholar 

  36. Lian H, Wu J, Hu Y, Gup H. Self-assembled albumin nanoparticles for combination therapy in prostate cancer. Int J Nanomedicine. 2017;Volume 12:7777–87.

    Article  Google Scholar 

  37. Wolf MP, Liu K, Horn TFW, Hunziker P. FRET in a polymeric nanocarrier : IR-780 and IR-780-PDMS. Biomacromolecules. 2019;20:4065–74.

    Article  CAS  Google Scholar 

  38. Trindade IC, Pound-lana G, Pereira DGS, de Oliveira LAM, Andrade MS, Vilela JMC, et al. Mechanisms of interaction of biodegradable polyester nanocapsules with non-phagocytic cells. Eur J Pharm Sci [Internet]. Elsevier. 2018;124:89–104. https://doi.org/10.1016/j.ejps.2018.08.024.

    Article  CAS  Google Scholar 

  39. Bhattacharjee S. Review article DLS and zeta potential – What they are and what they are not ? J Control Release [Internet]. Elsevier B.V. 2016;235:337–51. https://doi.org/10.1016/j.jconrel.2016.06.017.

    Article  CAS  Google Scholar 

  40. Mosqueira VCF, Legrand P, Gulik A, Bourdon O, Gref R, Labarre D, et al. Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modified nanocapsules. Biomaterials. 2001;22:2967–79.

    Article  CAS  Google Scholar 

  41. Mosqueira VCF, Leite EA, Barros CM, Vilela JMC, Andrade MS. Polymeric nanostructures for drug delivery: characterization by atomic force microscopy. Microsc Microanal. 2005;11:36–9.

    Article  Google Scholar 

  42. Leite EA, Vilela JMC, Mosqueira VCF, Andrade MS. Poly-Caprolactone Nanocapsules Morphological Features by Atomic Force Microscopy. Microsc Microanal. 2005;11:48–51.

    Article  Google Scholar 

  43. Assis DN, Mosqueira VCF, Vilela JMC, Andrade MS, Cardoso VN. Release profiles and morphological characterization by atomic force microscopy and photon correlation spectroscopy of Technetium-fluconazole nanocapsules. Int J Pharm. 2008;349:152–60.

  44. Lohrke J, Briel A, Mader K. Characterization of superparamagnetic iron oxide nanoparticles by asymmetrical flow-field-flow-fractionation. Nanomedicine. 2008;3:437–52.

    Article  CAS  Google Scholar 

  45. Yu Q, Zhao L, Guo C, Yan B, Su G. Regulating protein corona formation and dynamic protein exchange by controlling nanoparticle hydrophobicity. Front Bioeng Biotechnol. 2020;8:1–9.

    Article  Google Scholar 

  46. Baalousha M, Kammer FVD, Motelica-heino M, Hilal HS, Le Coustumer P. Size fractionation and characterization of natural colloids by flow-field flow fractionation coupled to multi-angle laser light scattering. J Chromatogr A. 2006;1104:272–81.

    Article  CAS  Google Scholar 

  47. Martins G, Teixeira L, Pitta R, Alves C, Lima D, Mário J, et al. Improved nonclinical pharmacokinetics and biodistribution of a new PPAR pan-agonist and COX inhibitor in nanocapsule formulation. J Control Release [Internet]. Elsevier B.V. 2015;209:207–18. https://doi.org/10.1016/j.jconrel.2015.04.033.

    Article  CAS  Google Scholar 

  48. Oliveira LT, de Paula MA, Roatt BM, Garcia GM, Silva LSB, Reis AB, et al. Impact of dose and surface features on plasmatic and liver concentrations of biodegradable polymeric nanocapsules. Eur J Pharm Sci [Internet]. Elsevier. 2017;105:19–32. https://doi.org/10.1016/j.ejps.2017.04.017.

    Article  CAS  Google Scholar 

  49. Guterres SS, Fessi H, Barratt G, Puisieux F, Devissaguet JP. Poly (rac -lactide) nanocapsules containing diclofenac: protection against muscular damage in rats. Aust J Biol Sci. 2000;11:1347–55.

    CAS  Google Scholar 

  50. Claudia M, Kristin Ö, Jennifer O, Eva R, Eleonore F. Comparison of fluorescence-based methods to determine nanoparticle uptake by phagocytes and non-phagocytic cells in vitro. Toxicology [Internet]. Elsevier Ireland Ltd. 2017;378:25–36. https://doi.org/10.1016/j.tox.2017.01.001.

    Article  CAS  Google Scholar 

  51. Canton I, Battaglia G. Endocytosis at the nanoscale. Chem Soc Rev. 2012;41:2718–39.

    Article  CAS  Google Scholar 

  52. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Analysis of nanoparticle delivery to tumours. Natl Rev. 2016;1:1–12.

    Google Scholar 

Download references

Acknowledgments

The authors thank CAPES/Brazil and FAPEMIG scholarships for postgraduation students. We acknowledge Dra. Nívia C.N. Paiva for her skillful assistance with confocal laser microscopy and Prof. F. G. Araújo for the access to the AFM equipment at the NanoLab/REDEMAT/UFOP acquired with financial support of CT-Infra FINEP/Brazil.

Funding

We received financial support from Brazilian funding agencies: INCT-NANOFARMA (Grant #2014/50928-2) and CNPq-grants (# BJT 400889/2014-5, #310463/2015-7 and #481872/2013-2) FAPEMIG-grants (#APQ-02864-16, APQ-02576-18 and NANOBIOMG Network-RED-00007-14) and PROPP/UFOP (grant to APMB).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization [MGCM, GPL, VCFM]; methodology [MGCM, GPL, MAO, EGL, MCPF, ACFB, APMB, RDOAS]; formal analysis and investigation [MGCM, GPL, VCFM]; original draft preparation [MGCM]; writing, review and editing [MGCM, GPL, VCFM]; funding acquisition [VCFM]; resources [VCFM]; supervision [GPL, VCFM].

Corresponding author

Correspondence to Vanessa Carla Furtado Mosqueira.

Ethics declarations

Ethical standards

We declare that the experiments comply with the current laws of the country in which they were performed.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado, M.G.C., Pound-Lana, G., de Oliveira, M.A. et al. Labeling PLA-PEG nanocarriers with IR780: physical entrapment versus covalent attachment to polylactide. Drug Deliv. and Transl. Res. 10, 1626–1643 (2020). https://doi.org/10.1007/s13346-020-00812-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00812-6

Keywords

Navigation