Skip to main content

Advertisement

Log in

Lipid-based nanosystems for targeting bone implant-associated infections: current approaches and future endeavors

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Bone infections caused by Staphylococcus aureus are a major concern in medical care, particularly when associated with orthopedic-implant devices. The ability of the bacteria to form biofilms and their capacity to invade and persist within osteoblasts turn the infection eradication into a huge challenge. The reduction of antibiotic penetration through bacterial biofilms associated with the presence of persistent cells, ability to survive in the host, and high tolerance to antibiotics are some of the reasons for the difficult treatment of these infections. Effective therapeutic approaches are urgently needed. In this sense, lipid-based nanosystems, such as liposomes, have been investigated as an innovative and alternative strategy for the treatment of implant-associated S. aureus infections, due to their preferential accumulation at infected sites and interaction with S. aureus. This review highlights the recent advances on antibiotic-loaded liposome formulations both in vitro and in vivo and how the interaction with S. aureus biofilms may be improved by modulating the liposomal external surface.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ferreira M, Rzhepishevska O, Grenho L, Malheiros D, Gonçalves L, Almeida AJ, et al. Levofloxacin-loaded bone cement delivery system: highly effective against intracellular bacteria and Staphylococcus aureus biofilms. Int J Pharm. 2017;532:241–8.

    CAS  PubMed  Google Scholar 

  2. Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28:603–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bejon P, Robinson E. Bone and joint infection. Medicine. 2017;45:711–4.

    Google Scholar 

  4. Hibbitts A, O’Leary C. Emerging nanomedicine therapies to counter the rise of methicillin-resistant Staphylococcus aureus. Materials (Basel). 2018;11:321.

    Google Scholar 

  5. Bui LMG, Conlon BP, Kidd SP. Antibiotic tolerance and the alternative lifestyles of Staphylococcus aureus. Essays Biochem. 2017;61:71–9.

    PubMed  Google Scholar 

  6. Conlon BP. Staphylococcus aureus chronic and relapsing infections: evidence of a role for persister cells. BioEssays. 2014;36:991–6.

    PubMed  Google Scholar 

  7. Grassi L, Maisetta G, Esin S, Batoni G. Combination strategies to enhance the efficacy of antimicrobial peptides against bacterial biofilms. Front Microbiol. 2017;8:2409.

    PubMed  PubMed Central  Google Scholar 

  8. Sahukhal GS, Pandey S, Elasri MO. msaABCR operon is involved in persister cell formation in Staphylococcus aureus. BMC Microbiol. 2017;17:218.

    PubMed  PubMed Central  Google Scholar 

  9. Høiby N, Bjarnsholt T, Moser C, Bassi GL, Coenye T, Donelli G, et al. ESCMID∗ guideline for the diagnosis and treatment of biofilm infections 2014. Clin Microbiol Infect. 2015;21:S1–25.

    PubMed  Google Scholar 

  10. Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002;8:881–90.

    PubMed  PubMed Central  Google Scholar 

  11. Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35:322–32.

    PubMed  Google Scholar 

  12. Alexander EH, Hudson MC. Factors influencing the internalization of Staphylococcus aureus and impacts on the course of infections in humans. Appl Microbiol Biotechnol. 2001;56:361–6.

    CAS  PubMed  Google Scholar 

  13. Campoccia D, Montanaro L, Arciola CR. The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials. 2006;27:2331–9.

    CAS  PubMed  Google Scholar 

  14. Marriott I. Osteoblast responses to bacterial pathogens: a previously unappreciated role for bone-forming cells in host defense and disease progression. Immunol Res. 2004;30:291–308.

    CAS  PubMed  Google Scholar 

  15. Sinha B, Fraunholz M. Staphylococcus aureus host cell invasion and post-invasion events. Int J Med Microbiol. 2010;300:170–5.

    PubMed  Google Scholar 

  16. Campoccia D, Montanaro L, Ravaioli S, Cangini I, Testoni F, Visai L, et al. New parameters to quantitatively express the invasiveness of bacterial strains from implant-related orthopaedic infections into osteoblast cells. Materials (Basel). 2018;11:E550.

    Google Scholar 

  17. Ellington JK, Harris M, Hudson MC, Vishin S, Webb LX, Sherertz R. Intracellular Staphylococcus aureus and antibiotic resistance: implications for treatment of staphylococcal osteomyelitis. J Orthop Res. 2006;24:87–93.

    PubMed  Google Scholar 

  18. Garzoni C, Kelley WL. Staphylococcus aureus: new evidence for intracellular persistence. Trends Microbiol. 2009;17:59–65.

    CAS  PubMed  Google Scholar 

  19. Scherr TD, Hanke ML, Huang O, James DBA, Horswill AR, Bayles KW, et al. Staphylococcus aureus biofilms induce macrophage dysfunction through leukocidin AB and alpha-toxin. MBio. 2015;6:25–7.

    Google Scholar 

  20. Lima ALL, Oliveira PR, Carvalho VC, Cimerman S, Savio E. Recommendations for the treatment of osteomyelitis. Braz J Infect Dis. 2014;18:526–34.

    PubMed  Google Scholar 

  21. Fraimow HS. Systemic antimicrobial therapy in osteomyelitis. Semin Plast Surg. 2009;23:90–9.

    PubMed  PubMed Central  Google Scholar 

  22. Landersdorfer CB, Bulitta JB, Kinzig M, Holzgrabe U, Sörgel F. Penetration of antibacterials into bone pharmacokinetic, pharmacodynamic and bioanalytical considerations. Clin Pharmacokinet. 2009;48:89–124.

    CAS  PubMed  Google Scholar 

  23. Lewis K. Platforms for antibiotic discovery. Nat Rev Drug Discov. 2013;12:371–87.

    CAS  PubMed  Google Scholar 

  24. Akimoto Y, Kaneko K, Tamura T. Amoxicillin concentrations in serum, jaw cyst, and jawbone following a single oral administration. J Oral Maxillofac Surg. 1982;40:287–93.

    CAS  PubMed  Google Scholar 

  25. Spellberg B, Lipsky BA. Systemic antibiotic therapy for chronic osteomyelitis in adults. Clin Infect Dis. 2012;54:393–407.

    PubMed  Google Scholar 

  26. Pea F. Penetration of antibacterials into bone. Clin Pharmacokinet. 2009;48:125–7.

    CAS  PubMed  Google Scholar 

  27. Bystedt H, Dahlbäck A, Dornbusch K, Nord CE. Concentrations of azidocillin, erythromycin, doxycycline and clindamycin in human mandibular bone. Int J Oral Surg. 1978;7:442–9.

    CAS  PubMed  Google Scholar 

  28. Martin C, Alaya M, Mallet MN, Viviand X, Ennabli K, Said R, et al. Penetration of vancomycin in cardiac and mediastinal tissues in humans. Pathol Biol. 1994;42:520–4.

    CAS  PubMed  Google Scholar 

  29. Massias L, Dubois C, De Lentdecker P, Brodaty O, Fischler M, Farinotti R. Penetration of vancomycin in uninfected sternal bone. Antimicrob Agents Chemother. 1992;36:2539–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Graziani AL, Lawson LA, Gibson GA, Steinberg MA, McGregor RR. Vancomycin concentrations in infected and noninfected human bone. Antimicrob Agents Chemother. 1988;32:1320–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rimmele T. Diffusion of levofloxacin into bone and synovial tissues. J Antimicrob Chemother. 2004;53:533–5.

    CAS  PubMed  Google Scholar 

  32. Baum H, Böttcher S, Abel R, Gerner H, Sonntag H-G. Tissue and serum concentrations of levofloxacin in orthopaedic patients. Int J Antimicrob Agents. 2001;18:335–40.

    Google Scholar 

  33. Traunmüller F, Schintler MV, Metzler J, Spendel S, Mauric O, Popovic M, et al. Soft tissue and bone penetration abilities of daptomycin in diabetic patients with bacterial foot infections. J Antimicrob Chemother. 2010;65:1252–7.

    PubMed  Google Scholar 

  34. Gomes D, Pereira M, Bettencourt AF. Osteomyelitis: an overview of antimicrobial therapy. Braz J Pharm Sci. 2013;49:13–27.

    CAS  Google Scholar 

  35. Cheng L, Renz N, Trampuz A. Management of periprosthetic joint infection. Kühn K-D, editor. Hip Pelvis Berlin. 2018;30:138–46.

    Google Scholar 

  36. Stengel D, Bauwens K, Sehouli J. Ekkernkamp a, Porzsolt F. Systematic review and meta-analysis of antibiotic therapy for bone and joint infections. Lancet Infect Dis. 2001;1:175–88.

    CAS  PubMed  Google Scholar 

  37. Zimmerli W, Sendi P. Orthopaedic biofilm infections. APMIS. 2017;125:353–64.

    PubMed  Google Scholar 

  38. Cheng H, Chawla A, Yang Y, Li Y, Zhang J, Jang HL, et al. Development of nanomaterials for bone-targeted drug delivery. Drug Discov Today. 2017;22:1336–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Xiong MH, Bao Y, Yang XZ, Zhu YH, Wang J. Delivery of antibiotics with polymeric particles. Adv Drug Deliv Rev. 2014;78:63–76.

    CAS  PubMed  Google Scholar 

  40. Nandi SK, Mukherjee P, Roy S, Kundu B, De DK, Basu D. Local antibiotic delivery systems for the treatment of osteomyelitis – a review. Mater Sci Eng C. 2009;29:2478–85.

    CAS  Google Scholar 

  41. Forier K, Raemdonck K, De Smedt SC, Demeester J, Coenye T, Braeckmans K. Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. J Control Release. 2014;190:607–23.

    CAS  PubMed  Google Scholar 

  42. Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine. 2012;8:147–66.

    CAS  PubMed  Google Scholar 

  43. Dos Santos Ramos MA, Da Silva P, Spósito L, De Toledo L, Bonifácio B, Rodero CF, et al. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review. Int J Nanomedicine. 2018;13:1179–213.

    PubMed  PubMed Central  Google Scholar 

  44. Rukavina Z, Vanić Ž. Current trends in development of liposomes for targeting bacterial biofilms. Pharmaceutics. 2016;8:E18.

    PubMed  Google Scholar 

  45. Lewis G. Not all approved antibiotic-loaded PMMA bone cement brands are the same: ranking using the utility materials selection concept. J Mater Sci Mater Med. 2015;26:5388.

    PubMed  Google Scholar 

  46. Bistolfi A, Massazza G, Verné E, Massè A, Deledda D, Ferraris S, et al. Antibiotic-loaded cement in orthopedic surgery: a review. ISRN Orthop. 2011;2011:1–8.

    Google Scholar 

  47. Jiranek WA, Hanssen AD, Greenwald AS. Antibiotic-loaded bone cement for infection prophylaxis in total joint replacement. J Bone Jt Surg. 2006;88:2487–500.

    Google Scholar 

  48. Soares D, Leite P, Barreira P, Aido R, Sousa R. Antibiotic-loaded bone cement in total joint arthroplasty. Acta Orthop Belg. 2015;81:184–90.

    PubMed  Google Scholar 

  49. Van de Belt H, Neut D, Schenk W, van Horn JR, van der Mei HC, Busscher HJ. Infection of orthopedic implants and the use of antibiotic-loaded bone cements A review. Acta Orthop Scand. 2001;72:557–71.

    PubMed  Google Scholar 

  50. Athans V, Veve MP, Davis SL. Trowels and tribulations: review of antimicrobial-impregnated bone cements in prosthetic joint surgery. Pharmacotherapy. 2017;37:1565–77.

    PubMed  Google Scholar 

  51. Vaishya R, Chauhan M, Vaish A. Bone cement. J Clin Orthop Trauma. 2013;4:157–63.

    PubMed  PubMed Central  Google Scholar 

  52. Saleh KJ, El Othmani MM, Tzeng TH, Mihalko WM, Chambers MC, Grupp TM. Acrylic bone cement in total joint arthroplasty: a review. J Orthop Res. 2016;34:737–44.

    CAS  Google Scholar 

  53. Snoddy B, Jayasuriya AC. The use of nanomaterials to treat bone infections. Mater Sci Eng C. 2016;67:822–33.

    CAS  Google Scholar 

  54. Arora M, Chan EK, Gupta S, Diwan AD. Polymethylmethacrylate bone cements and additives: a review of the literature. World J Orthop. 2013;4:67–74.

    PubMed  PubMed Central  Google Scholar 

  55. Matos AC, Ribeiro IAC, Guedes RC, Pinto R, Vaz MA, Goncalves LM, et al. Key-properties outlook of a levofloxacin-loaded acrylic bone cement with improved antibiotic delivery. Int J Pharm. 2015;485:317–28.

    CAS  PubMed  Google Scholar 

  56. Shi Z, Neoh KGG, Kang ETT, Wang W. Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials. 2006;27:2440–9.

    CAS  PubMed  Google Scholar 

  57. Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, et al. Nanoparticulate silver. A new antimicrobial substance for bone cement. Orthopade. 2004;33:885–92.

    CAS  PubMed  Google Scholar 

  58. Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, et al. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials. 2004;25:4383–91.

    CAS  PubMed  Google Scholar 

  59. Asli A, Brouillette E, Ster C, Ghinet MG, Brzezinski R, Lacasse P, et al. Antibiofilm and antibacterial effects of specific chitosan molecules on Staphylococcus aureus isolates associated with bovine mastitis. PLoS One. 2017;12:e0176988.

    PubMed  PubMed Central  Google Scholar 

  60. Li W-R, Xie X-B, Shi Q-S, Duan S-S, Ouyang Y-S, Chen Y-B. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. BioMetals. 2011;24:135–41.

    CAS  PubMed  Google Scholar 

  61. Zhang W, Lei G, Liu Y, Wang W, Song T, Fan J. Approach to osteomyelitis treatment with antibiotic loaded PMMA. Microb Pathog. 2017;102:42–4.

    CAS  Google Scholar 

  62. Nandi SK, Bandyopadhyay S, Das P, Samanta I, Mukherjee P, Roy S, et al. Understanding osteomyelitis and its treatment through local drug delivery system. Biotechnol Adv. 2016;34:1305–17.

    CAS  PubMed  Google Scholar 

  63. Bastari K, Arshath M, Ng ZHM, Chia JH, ZXD Y, Sana B, et al. A controlled release of antibiotics from calcium phosphate-coated poly(lactic-co-glycolic acid) particles and their in vitro efficacy against Staphylococcus aureus biofilm. J Mater Sci Mater Med. 2014;25:747–57.

    CAS  PubMed  Google Scholar 

  64. Ignjatović NL, Ninkov P, Sabetrasekh R, Uskoković DP. A novel nano drug delivery system based on tigecycline-loaded calciumphosphate coated with poly-dl-lactide-co-glycolide. J Mater Sci Mater Med. 2010;21:231–9.

    PubMed  Google Scholar 

  65. Mifsud M, McNally M. Local delivery of antimicrobials in the treatment of bone infections. Orthop Traumatol. 2019;33:160–5.

    Google Scholar 

  66. Szurkowska K, Laskus A, Kolmas J. Hydroxyapatite-based materials for potential use in bone tissue infections. In: Thirumalai J, editor. InTech; 2018 pp. 109–35.

  67. Kaya M, Şimşek-Kaya G, Gürsan N, Kireççi E, Dayı E, Gündoğdu B. Local treatment of chronic osteomyelitis with surgical debridement and tigecycline-impregnated calcium hydroxyapatite: an experimental study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113:340–7.

    PubMed  Google Scholar 

  68. Zhou Q, Wang T, Wang C, Wang Z, Yang Y, Li P, et al. Synthesis and characterization of silver nanoparticles-doped hydroxyapatite/alginate microparticles with promising cytocompatibility and antibacterial properties. Colloids Surfaces A Physicochem Eng Asp. 2020;585:124081.

    CAS  Google Scholar 

  69. Zhang LG, Im O, Li J, Keidar M. Biomimetic three-dimensional nanocrystalline hydroxyapatite and magnetically synthesized single-walled carbon nanotube chitosan nanocomposite for bone regeneration. Int J Nanomedicine. 2012;7:2087.

    PubMed  PubMed Central  Google Scholar 

  70. Peng K-T, Chen C-F, Chu I-M, Li Y-M, Hsu W-H, Hsu RW-W, et al. Treatment of osteomyelitis with teicoplanin-encapsulated biodegradable thermosensitive hydrogel nanoparticles. Biomaterials. 2010;31:5227–36.

    CAS  PubMed  Google Scholar 

  71. Moghadas-Sharif N, Fazly Bazzaz BS, Khameneh B, Malaekeh-Nikouei B. The effect of nanoliposomal formulations on Staphylococcus epidermidis biofilm. Drug Dev Ind Pharm. 2015;41:445–50.

    CAS  PubMed  Google Scholar 

  72. Schiffelers RM, Storm G, Bakker-Woudenberg IA. Host factors influencing the preferential localization of sterically stabilized liposomes in Klebsiella pneumoniae-infected rat lung tissue. Pharm Res. 2001;18:780–7.

    CAS  PubMed  Google Scholar 

  73. Gaspar M, Cruz A, Fraga A, Castro A, Cruz M, Pedrosa J. Developments on drug delivery systems for the treatment of mycobacterial infections. Curr Top Med Chem. 2008;8:579–91.

    CAS  PubMed  Google Scholar 

  74. Gaspar MM, Calado S, Pereira J, Ferronha H, Correia I, Castro H, et al. Targeted delivery of paromomycin in murine infectious diseases through association to nano lipid systems. Nanomedicine. 2015;11:1851–60.

    CAS  PubMed  Google Scholar 

  75. Gaspar MM, Radomska A, Gobbo OL, Bakowsky U, Radomski MW, Ehrhardt C. Targeted delivery of transferrin-conjugated liposomes to an orthotopic model of lung cancer in nude rats. J Aerosol Med Pulm Drug Deliv. 2012;25:310–8.

    CAS  PubMed  Google Scholar 

  76. Cruz M, Simões S, Crow M, Martins M, Gaspar M. Formulation of nanoparticulate drug delivery systems (NPDDS) for macromolecules. In: Pathak Y, Thassu D, editors. Informa Healthcare USA I. New York: Drug Deliv nanoparticles Formul Charact; 2009. p. 35–49.

    Google Scholar 

  77. Xing H, Hwang K, Lu Y. Recent developments of liposomes as nanocarriers for theranostic applications. Theranostics. 2016;6:1336–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Rivero Berti I, Dell’Arciprete ML, Dittler ML, Miñan A, Fernández Lorenzo de Mele M, Gonzalez M. Delivery of fluorophores by calcium phosphate-coated nanoliposomes and interaction with Staphylococcus aureus biofilms. Colloids Surf B: Biointerfaces. 2016;142:214–22.

    CAS  PubMed  Google Scholar 

  79. Vyas SP, Sihorkar V, Jain S. Mannosylated liposomes for bio-film targeting. Int J Pharm. 2007;330:6–13.

    CAS  PubMed  Google Scholar 

  80. Dogbe MG, Mafilaza AY, Eleutério CV, Cabral-Marques H, Simões S, Gaspar MM. Pharmaceutical benefits of fluticasone propionate association to delivery systems: In vitro and in vivo evaluation. Pharmaceutics. 2019;11:E521.

    PubMed  Google Scholar 

  81. Ranjan A, Pothayee N, Seleem MN, Tyler RD, Brenseke B, Sriranganathan N, et al. Antibacterial efficacy of core-shell nanostructures encapsulating gentamicin against an in vivo intracellular Salmonella model. Int J Nanomedicine. 2009;4:289–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ranjan A, Pothayee N, Vadala TP, Seleem MN, Restis E, Sriranganathan N, et al. Efficacy of amphiphilic core-shell nanostructures encapsulating gentamicin in an in vitro Salmonella and Listeria intracellular infection model. Antimicrob Agents Chemother. 2010;54:3524–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Pinheiro M, Magalhães J, Reis S. Antibiotic interactions using liposomes as model lipid membranes. Chem Phys Lipids. 2019;222:36–46.

    CAS  PubMed  Google Scholar 

  84. Kadry AA, Al-Suwayeh SA, Abd-Allah ARA, Bayomi MA. Treatment of experimental osteomyelitis by liposomal antibiotics. J Antimicrob Chemother. 2004;54:1103–8.

    CAS  PubMed  Google Scholar 

  85. Dong D, Thomas N, Thierry B, Vreugde S, Prestidge CA, Wormald P-J. Distribution and inhibition of liposomes on Staphylococcus aureus and Pseudomonas aeruginosa biofilm. PLoS One. 2015;10:e0131806.

    PubMed  PubMed Central  Google Scholar 

  86. Forier K, Messiaen A-S, Raemdonck K, Nelis H, De Smedt S, Demeester J, et al. Probing the size limit for nanomedicine penetration into Burkholderia multivorans and Pseudomonas aeruginosa biofilms. J Control Release. 2014;195:21–8.

    CAS  PubMed  Google Scholar 

  87. Onyeji CO, Nightingale CH, Marangos MN. Enhanced killing of methicillin-resistant Staphylococcus aureus in human macrophages by liposome-entrapped vancomycin and teicoplanin. Infection. 1994;22:338–42.

    CAS  PubMed  Google Scholar 

  88. Sande L, Sanchez M, Montes J, Wolf AJ, Morgan MA, Omri A, et al. Liposomal encapsulation of vancomycin improves killing of methicillin-resistant Staphylococcus aureus in a murine infection model. J Antimicrob Chemother. 2012;67:2191–4.

    CAS  PubMed  Google Scholar 

  89. Liu J, Wang Z, Li F, Gao J, Wang L, Huang G. Liposomes for systematic delivery of vancomycin hydrochloride to decrease nephrotoxicity: Characterization and evaluation. Asian J Pharm Sci. 2015;10:212–22.

    Google Scholar 

  90. Yang Z, Liu J, Gao J, Chen S, Huang G. Chitosan coated vancomycin hydrochloride liposomes: characterizations and evaluation. Int J Pharm. 2015;495:508–15.

    CAS  PubMed  Google Scholar 

  91. Alshamsan A, Aleanizy FS, Badran M, Alqahtani FY, Alfassam H, Almalik A, et al. Exploring anti-MRSA activity of chitosan-coated liposomal dicloxacillin. J Microbiol Methods. 2019;156:23–8.

    CAS  PubMed  Google Scholar 

  92. Zhu C-T, Xu Y-Q, Shi J, Li J, Ding J. Liposome combined porous β-TCP scaffold: preparation, characterization, and anti-biofilm activity. Drug Deliv. 2010;17:391–8.

    CAS  PubMed  Google Scholar 

  93. Zhou T-H, Su M, Shang B-C, Ma T, Xu G-L, Li H-L, et al. Nano-hydroxyapatite/β-tricalcium phosphate ceramics scaffolds loaded with cationic liposomal ceftazidime: preparation, release characteristics in vitro and inhibition to Staphylococcus aureus biofilms. Drug Dev Ind Pharm. 2012;38:1298–304.

    CAS  PubMed  Google Scholar 

  94. Ma T, Shang B-C, Tang H, Zhou T-H, Xu G-L, Li H-L, et al. Nano-hydroxyapatite/chitosan/konjac glucomannan scaffolds loaded with cationic liposomal vancomycin: preparation, in vitro release and activity against Staphylococcus aureus biofilms. J Biomater Sci Polym Ed. 2011;22:1669–81.

    CAS  PubMed  Google Scholar 

  95. Hui T, Yongqing X, Tiane Z, Gang L, Yonggang Y, Muyao J, et al. Treatment of osteomyelitis by liposomal gentamicin-impregnated calcium sulfate. Arch Orthop Trauma Surg. 2009;129:1301–8.

    PubMed  Google Scholar 

  96. Ayre WN, Birchall JC, Evans SL, Denyer SP. A novel liposomal drug delivery system for PMMA bone cements. J Biomed Mater Res Part B Appl Biomater. 2016;104:1510–24.

    CAS  Google Scholar 

  97. Liu X-M, Zhang Y, Chen F, Khutsishvili I, Fehringer EV, Marky LA, et al. Prevention of orthopedic device-associated osteomyelitis using oxacillin-containing biomineral-binding liposomes. Pharm Res. 2012;29:3169–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Laye C, McClements DJ, Weiss J. Formation of biopolymer-coated liposomes by electrostatic deposition of chitosan. J Food Sci. 2008;73:N7–15.

    CAS  PubMed  Google Scholar 

  99. Stapleton M, Sawamoto K, Alméciga-Díaz CJ, Mackenzie WG, Mason RW, Orii T, et al. Development of bone targeting drugs. Int J Mol Sci. 2017;18:E1345.

    PubMed  Google Scholar 

  100. Hengst V, Oussoren C, Kissel T, Storm G. Bone targeting potential of bisphosphonate-targeted liposomes. Preparation, characterization and hydroxyapatite binding in vitro. Int J Pharm. 2007;331:224–7.

    CAS  PubMed  Google Scholar 

  101. Gaspar MM, Boerman OC, Laverman P, Corvo ML, Storm G, Cruz MEM. Enzymosomes with surface-exposed superoxide dismutase: in vivo behaviour and therapeutic activity in a model of adjuvant arthritis. J Control Release Netherlands. 2007;117:186–95.

    CAS  Google Scholar 

  102. Fielding RM. Liposomal Drug Delivery. Clin Pharmacokinet. 1991;21:155–64.

    CAS  PubMed  Google Scholar 

  103. He H, Yuan D, Wu Y, Cao Y. Pharmacokinetics and pharmacodynamics modeling and simulation systems to support the development and regulation of liposomal drugs. Pharmaceutics. 2019;11:110.

    CAS  PubMed Central  Google Scholar 

  104. Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1:297–315.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Jøraholmen MW, Bhargava A, Julin K, Johannessen M, Škalko-Basnet N. The antimicrobial properties of chitosan can be tailored by formulation. Mar Drugs. 2020;18:1–15.

    Google Scholar 

  106. Mady MM, Darwish MM. Effect of chitosan coating on the characteristics of DPPC liposomes. J Adv Res. 2010;1:187–91.

    Google Scholar 

  107. Nishino Y, Takemura S, Minamiyama Y, Hirohashi K, Tanaka H, Inoue M, et al. Inhibition of vancomycin-induced nephrotoxicity by targeting superoxide dismutase to renal proximal tubule cells in the rat. Redox Rep. 2002;7:317–9.

    CAS  PubMed  Google Scholar 

  108. Rybak MJ. The pharmacokinetic and pharmacodynamic properties of vancomycin. Clin Infect Dis. 2006;42:S35–9 A.

    CAS  PubMed  Google Scholar 

  109. Gaspar MM, Cruz A, Penha AF, Reymão J, Sousa AC, Eleutério CV, et al. Rifabutin encapsulated in liposomes exhibits increased therapeutic activity in a model of disseminated tuberculosis. Int J Antimicrob Agents. 2008;31:37–45.

    CAS  PubMed  Google Scholar 

  110. Darley ESR, MacGowan AP. Antibiotic treatment of Gram-positive bone and joint infections. J Antimicrob Chemother. 2004;53:928–35.

    CAS  PubMed  Google Scholar 

  111. Humphrey SJ, Mehta S, Seaber AV, Vail TP. Pharmacokinetics of a degradable drug delivery system in bone. Clin Orthop Relat Res. 1998;349:218–24.

    Google Scholar 

  112. Zylberberg C, Matosevic S. Bioengineered liposome–scaffold composites as therapeutic delivery systems. Ther Deliv. 2017;8:425–45.

    CAS  PubMed  Google Scholar 

  113. Kendoff DO, Gehrke T, Stangenberg P, Frommelt L, Bösebeck H. Bioavailability of gentamicin and vancomycin released from an antibiotic containing bone cement in patients undergoing a septic one-stage total hip arthroplasty (THA) revision: a monocentric open clinical trial. HIP Int. 2016;26:90–6.

    PubMed  Google Scholar 

  114. Luo S, Jiang T, Yang Y, Yang X, Zhao J. Combination therapy with vancomycin-loaded calcium sulfate and vancomycin-loaded PMMA in the treatment of chronic osteomyelitis. BMC Musculoskelet Disord. 2016;17:502.

    PubMed  PubMed Central  Google Scholar 

  115. Jiang N, Zhao X, Wang L, Lin Q, Hu Y, Yu B. Single-stage debridement with implantation of antibiotic-loaded calcium sulphate in 34 cases of localized calcaneal osteomyelitis. Acta Orthop. 2020;3674:1–7.

    Google Scholar 

Download references

Funding

Fundação para a Ciência e a Tecnologia (FCT) of Portugal provided financial support (iMed.ULisboa, UID/DTP/04138/2019 and PTDC/MED-QUI/31721/2017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ana Bettencourt or Maria Manuela Gaspar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, M., Aguiar, S., Bettencourt, A. et al. Lipid-based nanosystems for targeting bone implant-associated infections: current approaches and future endeavors. Drug Deliv. and Transl. Res. 11, 72–85 (2021). https://doi.org/10.1007/s13346-020-00791-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00791-8

Keywords

Navigation