Skip to main content
Log in

Rapid optimization of liposome characteristics using a combined microfluidics and design-of-experiment approach

  • Short Communication
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Liposomes have attracted much attention as the first nanoformulations entering the clinic. The optimization of physicochemical properties of liposomes during nanomedicine development however is time-consuming and challenging despite great advances in formulation development. Here, we present a systematic approach for the rapid size optimization of liposomes. The combination of microfluidics with a design-of-experiment (DoE) approach offers a strategy to rapidly screen and optimize various liposome formulations, i.e., up to 30 liposome formulations in 1 day. Five representative liposome formulations based on clinically approved lipid compositions were formulated using systematic variations in microfluidics flow rate settings, i.e., flow rate ratio (FRR) and total flow rate (TFR). Interestingly, flow rate-dependent DoE models for the prediction of liposome characteristics could be grouped according to lipid-phase transition temperature and surface characteristics. For all formulations, the FRR had a significant impact (p < 0.001) on hydrodynamic diameter and size distribution of liposomes, while the TFR mainly affected the production rate. Liposome characteristics remained constant for TFRs above 8 mL/min. The stability study revealed an influence of lipid:cholesterol ratio (1:1 and 2:1 ratio) and presence of PEG on liposome characteristics during storage. To validate our DoE models, we formulated liposomes incorporating hydrophobic dodecanethiol-coated gold nanoparticles. This proof-of-concept step showed that flow rate settings predicted by DoE models successfully determined the size of resulting empty liposomes (109.3 ± 15.3 nm) or nanocomposites (111 ± 17.3 nm). This study indicates that a microfluidics-based formulation approach combined with DoE is suitable for the routine development of monodisperse and size-specific liposomes in a reproducible and rapid manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release Off J Control Release Soc. 2015;200:138–57.

    Article  CAS  Google Scholar 

  2. Liu Y, Miyoshi H, Nakamura M. Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int J Cancer. 2007;120:2527–37.

    Article  CAS  PubMed  Google Scholar 

  3. Lu Y, Chen W. Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem Soc Rev. 2012;41:3594–623.

    Article  CAS  PubMed  Google Scholar 

  4. Mieszawska AJ, Mulder WJM, Fayad ZA, Cormode DP. Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm. 2013;10:831–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shahbazi M-A, Almeida PV, Correia A, Herranz-Blanco B, Shrestha N, Mäkilä E, et al. Intracellular responsive dual delivery by endosomolytic polyplexes carrying DNA anchored porous silicon nanoparticles. J Control Release Off J Control Release Soc. 2017;249:111–22.

    Article  CAS  Google Scholar 

  6. Shahbazi M-A, Shrestha N, Mäkilä E, Araújo F, Correia A, Ramos T, et al. A prospective cancer chemo-immunotherapy approach mediated by synergistic CD326 targeted porous silicon nanovectors. Nano Res. 2015;8:1505–21.

    Article  CAS  Google Scholar 

  7. Tokonami S, Yamamoto Y, Shiigi H, Nagaoka T. Synthesis and bioanalytical applications of specific-shaped metallic nanostructures: a review. Anal Chim Acta. 2012;716:76–91.

    Article  CAS  PubMed  Google Scholar 

  8. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65:36–48.

    Article  CAS  PubMed  Google Scholar 

  9. Gregoriadis G. Liposomology: delivering the message. J Liposome Res. 2018;28:1–4.

    Article  PubMed  Google Scholar 

  10. Slingerland M, Guchelaar H-J, Gelderblom H. Liposomal drug formulations in cancer therapy: 15 years along the road. Drug Discov Today. 2012;17:160–6.

    Article  CAS  PubMed  Google Scholar 

  11. Barenholz Y. Doxil®--the first FDA-approved nano-drug: lessons learned. J Control Release Off J Control Release Soc. 2012;160:117–34.

    Article  CAS  Google Scholar 

  12. Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med. 2016;1:10–29.

    Article  Google Scholar 

  13. Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9:1–33.

    Article  CAS  Google Scholar 

  14. Kastner E, Kaur R, Lowry D, Moghaddam B, Wilkinson A, Perrie Y. High-throughput manufacturing of size-tuned liposomes by a new microfluidics method using enhanced statistical tools for characterization. Int J Pharm. 2014;477:361–8.

    Article  CAS  PubMed  Google Scholar 

  15. Belliveau NM, Huft J, Lin PJ, Chen S, Leung AK, Leaver TJ, et al. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol Ther Nucleic Acids. 2012;e37:1.

    Google Scholar 

  16. Kastner E, Verma V, Lowry D, Perrie Y. Microfluidic-controlled manufacture of liposomes for the solubilisation of a poorly water soluble drug. Int J Pharm. 2015;485:122–30.

    Article  CAS  PubMed  Google Scholar 

  17. Song Y, Hormes J, Kumar CSSR. Microfluidic synthesis of nanomaterials. Small Weinh Bergstr Ger. 2008;4:698–711.

    Article  CAS  Google Scholar 

  18. Carugo D, Bottaro E, Owen J, Stride E, Nastruzzi C. Liposome production by microfluidics: potential and limiting factors. Sci Rep. 2016;6:25876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mijajlovic M, Wright D, Zivkovic V, Bi JX, Biggs MJ. Microfluidic hydrodynamic focusing based synthesis of POPC liposomes for model biological systems. Colloids Surf B Biointerfaces. 2013;104:276–81.

    Article  CAS  PubMed  Google Scholar 

  20. Wibroe PP, Ahmadvand D, Oghabian MA, Yaghmur A, Moghimi SM. An integrated assessment of morphology, size, and complement activation of the PEGylated liposomal doxorubicin products Doxil®, Caelyx®, DOXOrubicin, and SinaDoxosome. J Control Release Off J Control Release Soc. 2016;221:1–8.

    Article  CAS  Google Scholar 

  21. Petre CE, Dittmer DP. Liposomal daunorubicin as treatment for Kaposi’s sarcoma. Int J Nanomedicine. 2007;2:277–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Leonard RCF, Williams S, Tulpule A, Levine AM, Oliveros S. Improving the therapeutic index of anthracycline chemotherapy: focus on liposomal doxorubicin (Myocet). Breast Edinb Scotl. 2009;18:218–24.

    Article  CAS  Google Scholar 

  23. Rodriguez MA, Pytlik R, Kozak T, Chhanabhai M, Gascoyne R, Lu B, et al. Vincristine sulfate liposomes injection (Marqibo) in heavily pretreated patients with refractory aggressive non-Hodgkin lymphoma: report of the pivotal phase 2 study. Cancer. 2009;115:3475–82.

    Article  CAS  PubMed  Google Scholar 

  24. Silverman JA, Deitcher SR. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother Pharmacol. 2013;71:555–64.

    Article  CAS  PubMed  Google Scholar 

  25. Drummond DC, Noble CO, Guo Z, Hong K, Park JW, Kirpotin DB. Development of a highly active nanoliposomal irinotecan using a novel intraliposomal stabilization strategy. Cancer Res. 2006;66:3271–7.

    Article  CAS  PubMed  Google Scholar 

  26. Rasch MR, Rossinyol E, Hueso JL, Goodfellow BW, Arbiol J, Korgel BA. Hydrophobic gold nanoparticle self-assembly with phosphatidylcholine lipid: membrane-loaded and janus vesicles. Nano Lett. 2010;10:3733–9.

    Article  CAS  PubMed  Google Scholar 

  27. Witzigmann D, Sieber S, Porta F, Grossen P, Bieri A, Strelnikova N, et al. Formation of lipid and polymer based gold nanohybrids using a nanoreactor approach. RSC Adv. 2015;5:74320–8.

    Article  CAS  Google Scholar 

  28. Kulkarni JA, Tam YYC, Chen S, Tam YK, Zaifman J, Cullis PR, et al. Rapid synthesis of lipid nanoparticles containing hydrophobic inorganic nanoparticles. Nanoscale. 2017;9:13600–9.

    Article  CAS  PubMed  Google Scholar 

  29. Balbino TA, Aoki NT, Gasperini AAM, Oliveira CLP, Azzoni AR, Cavalcanti LP, et al. Continuous flow production of cationic liposomes at high lipid concentration in microfluidic devices for gene delivery applications. Chem Eng J. 2013;226:423–33.

    Article  CAS  Google Scholar 

  30. Huang Z, Li X, Zhang T, Song Y, She Z, Li J, et al. Progress involving new techniques for liposome preparation. Asian J Pharm Sci. 2014;9:176–82.

    Article  Google Scholar 

  31. Balbino TA, Azzoni AR, de la Torre LG. Microfluidic devices for continuous production of pDNA/cationic liposome complexes for gene delivery and vaccine therapy. Colloids Surf B Biointerfaces. 2013;111:203–10.

    Article  CAS  PubMed  Google Scholar 

  32. Jahn A, Stavis SM, Hong JS, Vreeland WN, DeVoe DL, Gaitan M. Microfluidic mixing and the formation of nanoscale lipid vesicles. ACS Nano. 2010;4:2077–87.

    Article  CAS  PubMed  Google Scholar 

  33. Correia MG, Briuglia ML, Niosi F, Lamprou DA. Microfluidic manufacturing of phospholipid nanoparticles: stability, encapsulation efficacy, and drug release. Int J Pharm. 2017;516:91–9.

    Article  CAS  Google Scholar 

  34. Leung AKK, Tam YYC, Chen S, Hafez IM, Cullis PR. Microfluidic mixing: a general method for encapsulating macromolecules in lipid nanoparticle systems. J Phys Chem B. 2015;119:8698–706.

    Article  CAS  PubMed  Google Scholar 

  35. Zhigaltsev IV, Tam YK, Leung AKK, Cullis PR. Production of limit size nanoliposomal systems with potential utility as ultra-small drug delivery agents. J Liposome Res. 2016;26:96–102.

    CAS  PubMed  Google Scholar 

  36. Gregoriadis G, Davis C. Stability of liposomes in vivo and in vitro is promoted by their cholesterol content and the presence of blood cells. Biochem Biophys Res Commun. 1979;89:1287–93.

    Article  CAS  PubMed  Google Scholar 

  37. Kirby C, Clarke J, Gregoriadis G. Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem J. 1980;186:591–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Briuglia M-L, Rotella C, McFarlane A, Lamprou DA. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res. 2015;5:231–42.

    Article  CAS  PubMed  Google Scholar 

  39. Arvizo R, Bhattacharya R, Mukherjee P. Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin Drug Deliv. 2010;7:753–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev. 2012;41:2740–79.

    Article  CAS  PubMed  Google Scholar 

  41. Dreaden EC, Mackey MA, Huang X, Kang B, El-Sayed MA. Beating cancer in multiple ways using nanogold. Chem Soc Rev. 2011;40:3391–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nikfarjam A, Rezayan AH, Mohammadkhani G, Mohammadnejad J. Label-free detection of digoxin using localized surface plasmon resonance-based nanobiosensor. Plasmonics. 2017;12:157–64.

    Article  CAS  Google Scholar 

  43. Liyun F, Xianggui K, Kefu C, Yajuan S, Qinghui Z, Youlin Z. Efficient phase transfer of hydrophobic CdSe quantum dots: from nonpolar organic solvent to biocompatible water buffer. Mater Chem Phys. 2005;93:310–3.

    Article  CAS  Google Scholar 

  44. Al-Jamal WT, Al-Jamal KT, Tian B, Lacerda L, Bomans PH, Frederik PM, et al. Lipid−quantum dot bilayer vesicles enhance tumor cell uptake and retention in vitro and in vivo. ACS Nano. 2008;2:408–18.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the bioimaging center of the Biozentrum Basel for their support with electron microscopy techniques and Tomas Skrinskas for proofreading the manuscript.

Funding

This study received financial support from the “Stiftung zur Förderung des pharmazeutischen Nachwuchses in Basel,” “Freiwillige Akademische Gesellschaft Basel,” and the Swiss National Science Foundation (SNF grant No. 174975 and 173057).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fereshteh Rahimi or Jörg Huwyler.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 558 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedighi, M., Sieber, S., Rahimi, F. et al. Rapid optimization of liposome characteristics using a combined microfluidics and design-of-experiment approach. Drug Deliv. and Transl. Res. 9, 404–413 (2019). https://doi.org/10.1007/s13346-018-0587-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-018-0587-4

Keywords

Navigation