Skip to main content

Advertisement

Log in

Enhancement of ocular efficacy of aceclofenac using biodegradable PLGA nanoparticles: formulation and characterization

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

In the present study, an effort was made to design poly (D, L-lactide-co-glycolide) acid nanoparticles of aceclofenac by direct precipitation method. The nanoparticles were found to have adequate particle size range for ocular administration of 162.6 to 244.13 nm with nearly spherical shape and with zeta potential of − 21.5 to − 25.5 mV. Drug entrapment efficiency of nanoparticle formulations ranged from 42.9 to 92.68%. Differential scanning calorimetric (DSC) and powder X-ray diffraction (PXRD) studies depicted that the drug incorporated in nanoparticles was found to be in amorphous state. Moreover, nanoparticles showed prolonged in vitro drug release profile and followed Higuchi-square-root release kinetics. Nanoparticles showed two folds higher permeation than aqueous solution of aceclofenac. Nanoparticles were well tolerated with no signs of corneal damage in in vitro transcorneal permeation studies. The formulation was quite stable. In vivo ocular anti-inflammatory study in the rabbit eyes confirmed better efficacy of nanoparticles as compared with the aqueous solution and its potential application in ocular inflammatory conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schoenwald RD. Controlled drug bioavailability. In: Smolen VF, Bull L, editors. Bioavailability control by drug delivery system design. New York: John Wiley & Sons; 1985. p. 257–306.

    Google Scholar 

  2. Huang Y, Tao Q, Hou D, Hu S, Tian S, Chen Y, et al. A novel ion exchange carrier based upon liposome-encapsulated montmorillonite for ophthalmic delivery of betaxolol hydrochloride. Int J Nanomedicine. 2017;12:1731–45.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gupta AK, Madan S, Majumdar DK, Maitra A. Ketorolac entrapped in polymeric micelles: preparation, characterization and ocular anti-inflammatory studies. Int J Pharm. 2000;209:1–14.

    Article  CAS  PubMed  Google Scholar 

  4. Katzer T, Chaves P, Bernardi A, Pohlmann A, Guterres SS, Ruver Beck RC. Prednisolone-loaded nanocapsules as ocular drug delivery system: development, in vitro drug release and eye toxicity. J Microencapsul. 2014;31(6):519–28.

    Article  CAS  PubMed  Google Scholar 

  5. Kalomiraki M, Thermos K, Chaniotakis NA. Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications. Int J Nanomedicine. 2015;11:1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Araujo J, Vega E, Lopes C, Egea MA, Garcia ML, Souto EB. Effect of polymer viscosity on physicochemical properties and ocular tolerance of FB-loaded PLGA nanospheres. Colloids Surf B Biointerfaces. 2009;72:48–56.

    Article  CAS  PubMed  Google Scholar 

  7. Vege E, Gamisans F, Garcia ML, Chauvet A, Lancoulonche F, Egea MA. PLGA nanospheres for ocular delivery of flurbiprofen: drug release and interactions. J Pharm Sci. 2008;97:5306–17.

    Article  Google Scholar 

  8. Ibrahim MM, Abd-Elgawad AH, Soliman OA, Jablonski MM. Stability and ocular pharmacokinetics of celecoxib-loaded nanoparticles topical ophthalmic formulations. Pharm Sci. 2016;105:3691–701.

    Article  CAS  Google Scholar 

  9. Agnihotri SM, Vavia PR. Diclofenac-loaded biopolymeric nanosuspensions for ophthalmic application. Nanomedicine. 2009;5:90–5.

    Article  CAS  PubMed  Google Scholar 

  10. Parra A, Mallandrich M, Clares B, Egea MA, Espina M, García ML, et al. Design and elaboration of freeze-dried PLGA nanoparticles for the transcorneal permeation of carprofen: ocular anti-inflammatory applications. Colloids Surf B Biointerfaces. 2015;136:935–43.

    Article  CAS  PubMed  Google Scholar 

  11. Searle AE, Pearce JL, Shaw DE. Topical use of indomethacin on the day of cataract surgery. Br J Ophthalmol. 1990;74:19–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Copper LA, Bergamini MV, Leopold IH. Use of flurbiprofen to inhibit corneal neovascularization. Arch Ophthalmol. 1980;98:1102–5.

    Article  Google Scholar 

  13. Gaynes BI, Fiscella R. Topical nonsteroidal antiinflammatory drugs for ophthalmic use: a safety review. Drug Saf. 2002;25:233–50.

    Article  CAS  PubMed  Google Scholar 

  14. Grau M, Montero JL, Guasch J, Felipe A, Carrasco E, Julia S. The pharmacological profile of aceclofenac, a new non steroidal anti-inflammatory and analgesic drug. Agents Actions Suppl. 1991;32:125–9.

    Article  CAS  PubMed  Google Scholar 

  15. Hinz B, Auge D, Rau T, Rietbrock S, Brune K, Werner U. Simultaneous determination of aceclofenac and three of its metabolites in human plasma by high performance liquid chromatography. Biomed Chromatogr. 2003;17:268–75.

    Article  CAS  PubMed  Google Scholar 

  16. Dooley M, Spencer CM, Dunn CJ. Aceclofenac: a reappraisal of its use in the management of pain and rheumatic disease. Drugs. 2001;61:1351–78.

    Article  CAS  PubMed  Google Scholar 

  17. Katara R, Sachdeva, Majumdar DK. Aceclofenac oil drops: characterization and evaluation against ocular inflammation. Pharm Dev Technol. 2017;19:1-7. doi:10.1080/10837450.2017.1337794

  18. Mathurm M, Gilhotra RM. Glycerogelatin-based ocular inserts of aceclofenac: physicochemical, drug release studies and efficacy against prostaglandin E2-induced ocular inflammation. Drug Deliv. 2011;18(1):54–64.

  19. Katara R, Majumdar DK, Eudragit RL. 100-based nanoparticulate system of aceclofenac for ocular delivery. Colloids Surf B Biointerfaces. 2013;1:455–62.

  20. Abelson MB, Butrus SI, Kliman GH, Larson DL, Corey EJ, Smith LM. Topical arachidonic acid: a model for screening anti-inflammatory agents. J Ocul Pharmacol. 1987;3:63–74.

    Article  CAS  PubMed  Google Scholar 

  21. Sood R. Medical Laboratory Technology: methods and interpretations. 4th edition. Jaypee Brothers; 1999. p. 169-237.

  22. Panda A, Meena J, Katara R, Majumdar DK. Formulation and characterization of clozapine and risperidone co-entrapped spray-dried PLGA nanoparticles. Pharm Dev Technol. 2016;21(1):43–53.

    Article  CAS  PubMed  Google Scholar 

  23. Cegnar M, Kos J, Kristl J. Cystatin incorporated in poly (lactide-coglycolide) nanoparticles: development and fundamental studies on preservation of its activity. Eur J Pharm Sci. 2004;22:357–64.

    Article  CAS  PubMed  Google Scholar 

  24. Luk CL, Youqin T. Zeta potential. In: Swarbrick J, Boylan JC, editors. Encyclopedia of pharmaceutical technology. New York: Marcel Dekker Inc; 1992.

    Google Scholar 

  25. Malhotra M, Majumdar DK. Permeation through cornea. Indian J Exp Biol. 2001;39:11–24.

    CAS  PubMed  Google Scholar 

  26. Costa P, Loba JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–33.

    Article  CAS  PubMed  Google Scholar 

  27. Mohamed QG, Hideo U, Johnny Y, Jasmine D, Labhasetwar V, Lee VH. The characteristics and mechanisms of uptake of PLGA nanoparticles in rabbit conjunctival epithelial cell layers. Pharm Res. 2004;21:641–8.

    Article  Google Scholar 

  28. Srinivasan BD, Kulkarni PS. The role of arachidonic acid metabolites in the mediation of the polymorphonuclear leukocyte response following corneal injury. Invest Ophthalmol Vis Sci. 1980;19:1087–93.

    CAS  PubMed  Google Scholar 

  29. Pignatello R, Ricupero N, Bucolo C, Maugeri F, Maltese A, Puglisi G. Preparation and characterization of Eudragit retard nanosuspensions for the ocular delivery of cloricromene. AAPS PharmSciTech. 2006;7:192–8.

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Govt. of NCT, New Delhi, India for providing fellowship to Rajesh Katara and Ranbaxy Laboratories Ltd. (Gurgaon, India) for gifting aceclofenac bulk drug. Thanks are also due to the National Institute of Immunology (New Delhi, India) for gifting PLGA and SAIF at AIIMS (New Delhi) for TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Katara.

Ethics declarations

Conflict of interest

Authors Rajesh Katara, Sameer Sachdeva, and Dipak K Majumdar declare that they have no conflict of interest.

Animal studies

All institutional and national guidelines for the care and use of laboratory animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katara, R., Sachdeva, S. & Majumdar, D.K. Enhancement of ocular efficacy of aceclofenac using biodegradable PLGA nanoparticles: formulation and characterization. Drug Deliv. and Transl. Res. 7, 632–641 (2017). https://doi.org/10.1007/s13346-017-0416-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-017-0416-1

Keywords

Navigation