Skip to main content
Log in

Improved intestinal absorption of water-soluble drugs by acetylation of G2 PAMAM dendrimer nanocomplexes in rat

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

In search of an effective and less toxic absorption enhancer, we synthesized primary amine acetylation of generation 2 polyamidoamine (G2 PAMAM) dendrimer (Ac-G2) by the reaction of G2 PAMAM dendrimer with acetic anhydride, and evaluated the effects of Ac-G2 on the intestinal absorption of poorly absorbable water-soluble drugs using an in situ closed-loop method in rats. The results indicated that Ac50-G2 had a greatest absorption enhancing effect for 5(6)-carboxyfluorescein (CF) in various acetylation levels of G2 PAMAM dendrimers. Ac50-G2 with various concentrations (0.1–1.0%, w/v) could significantly improve the intestinal absorption of alendronate, CF, and fluorescein isothiocyanate-labeled dextrans (FD4), although they did not enhance the absorption of macromolecular drug of FD10, and the absorption enhancement effect of Ac50-G2 was concentration-dependent. Furthermore, we examined the intestinal membrane damage with or without Ac50-G2. The results displayed Ac50-G2 at lower concentrations (0.1–0.5%, w/v) did not cause any observed toxic effect to the intestinal membranes. These findings suggested Ac50-G2 at lower concentrations (below 0.5%, w/v) might be promising as an effective and safe absorption enhancers to promote the intestinal absorption of poorly absorbable drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Reference

  1. Yamamoto A, Taniguchi T, Rikyuu K, Tsuji T, Fujita T, Murakami M, Muranishi S. Effects of various protease inhibitors on the intestinal absorption and degradation of insulin in rats. Pharm Res. 1994;11:1496–500.

    Article  CAS  PubMed  Google Scholar 

  2. Dong Z, Hamid KA, Gao Y, Lin Y, Katsumi H, Sakane T, Yamamoto A. Polyamidoamine dendrimers can improve the pulmonary absorption of insulin and calcitonin in rats. J Pharm Sci. 2011;100:1866–78.

    Article  CAS  PubMed  Google Scholar 

  3. Chonkar A, Nayak U, Udupa N. Smart polymers in nasal drug delivery. Indian J Pharm Sci. 2015;77:367–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Incecayir T, Sun J, Tsume Y, Xu H, Gose T, Nakanishi T, Tamai I, Hilfinger J, Lipka E, Amidon GL. Carrier-mediated prodrug uptake to improve the oral bioavailability of polar drugs: an application to an oseltamivir analogue. J Pharm Sci. 2016;105:925–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Esfand R, Tomalia DA. Poly (amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today. 2001;6:427–36.

    Article  CAS  PubMed  Google Scholar 

  6. Svenson S, Tomalia DA. Dendrimers in biomedical applications-reflections on the field. Adv Drug Deliv Rev. 2005;57:2106–29.

    Article  CAS  PubMed  Google Scholar 

  7. Yang H. Targeted nanosystems: Advances in targeted dendrimers for cancer therapy. Nanomedicine. 2016;12:309–16.

    Article  CAS  PubMed  Google Scholar 

  8. Liu Y, Tee JK, Chiu GN. Endrimers in oral drug delivery application: current explorations, toxicity issues and strategies for improvement. Curr Pharm Des. 2015;21:2629–42.

    Article  CAS  PubMed  Google Scholar 

  9. Huang B, Dong WJ, Yang GY, Wang W, Ji CH, Zhou FN. Dendrimer-coupled sonophoresis-mediated transdermal drug-delivery system for diclofenac. Drug Des Devel Ther. 2015;9:3867–76.

    PubMed  PubMed Central  Google Scholar 

  10. Bugno J, Hsu HJ, Hong S. Tweaking dendrimers and dendritic nanoparticles for controlled nano-bio interactions: potential nanocarriers for improved cancer targeting. J Drug Target. 2015;23:642–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Serramía MJ, Álvarez S, Fuentes-Paniagua E, Clemente MI, Sánchez-Nieves J, Gómez R, de la Mata J, Muñoz-Fernández MÁ. In vivo delivery of siRNA to the brain by carbosilane dendrimer. J Control Release. 2015;200:60–70.

    Article  PubMed  Google Scholar 

  12. Bai S, Thomas C, Ahsan F. Dendrimers as a carrier for pulmonary delivery of enoxaparin, a low-molecular weight heparin. J Pharm Sci. 2007;96:2090–106.

    Article  CAS  PubMed  Google Scholar 

  13. Kaminskas LM, McLeod VM, Ascher DB, Ryan GM, Jones S, Chan LJ, Sloan EK, Velkov T, Williams ED, Porter CJ. Methotrexate-conjugated PEGylated dendrimers show differential patterns of deposition and activity intumor-burdened lymph nodes after intravenous and subcutaneous administration in rats. Mol Pharm. 2015;12:432–43.

    Article  CAS  PubMed  Google Scholar 

  14. Hubbard D, Enda M, Bond T, Moghaddam SP, Conarton J, Scaife C, Volckmann E, Ghandehari H. Transepithelial transport of PAMAM dendrimers across isolated human intestinal tissue. Mol Pharm. 2015;12:4099–107.

    Article  CAS  PubMed  Google Scholar 

  15. Chaplot SP, Rupenthal ID. Dendrimers for gene delivery–a potential approach for ocular therapy? J Pharm Pharmacol. 2014;66:542–56.

    Article  CAS  PubMed  Google Scholar 

  16. Hong S, Bielinska AU, Mecke A, Keszler B, Beals JL, Shi X, Balogh L, Orr BG, Baker JRJ, Banaszak Holl MM. Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjug Chem. 2004;15:774–82.

    Article  CAS  PubMed  Google Scholar 

  17. Hong S, Rattan R, Majoros IJ, Mullen DG, Peters JL, Shi X, Bielinska AU, Blanco L, Orr BG, Baker JRJ, Banaszak Holl MM. The role of ganglioside GM (1) in cellular internalization mechanisms of poly(amidoamine) dendrimers. Bioconjug Chem. 2009;20:1503–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fetih G, Habib F, Okada N, Fujita T, Attia M, Yamamoto A. Nitric oxide donors can enhance the intestinal transport and absorption of insulin and 1,7 [Asu ]-eel calcitonin in rats. J Control Release. 2005;106:287–97.

    Article  CAS  PubMed  Google Scholar 

  19. Yun MH, Kwon KI. High-performance liquid chromatography method for determining alendronate sodium in human plasma by detecting fluorescence: application to a pharmacokinetic study in humans. J Pharm Biomed Anal. 2006;40:168–72.

    Article  CAS  PubMed  Google Scholar 

  20. Gao Y, He L, Katsumi H, Sakane T, Fujita T, Yamamoto A. Improvement of intestinal absorption of insulin and water-soluble macromolecular compounds by chitosan oligomers in rats. Int J Pharm. 2008a;359:70–8.

    Article  CAS  PubMed  Google Scholar 

  21. Gao Y, He L, Katsumi H, Sakane T, Fujita T, Yamamoto A. Improvement of intestinal absorption of water-soluble macromolecules by various polyamines: intestinal mucosal toxicity and absorption-enhancing mechanism of spermine. Int J Pharm. 2008b;354:126–34.

    Article  CAS  PubMed  Google Scholar 

  22. Dong Z, Katsumi H, Sakane T, Yamamoto A. Effects of polyamidoamine (PAMAM) dendrimers on the nasalabsorption of poorly absorbable drugs in rats. Int J Pharm. 2010;393:244–52.

    Article  CAS  PubMed  Google Scholar 

  23. Karande P, Jain A, Ergun K, Kispersky V, Mitragotri S. Design principles of chemical penetration enhancers for transdermal drug delivery. Proc Natl Acad Sci U S A. 2005;102:4688–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kolhatkar RB, Kitchens KM, Swaan PW, Ghandehari H. Surface acetylation of polyamidoamine (PAMAM) dendrimers decreases cytotoxicity while maintaining membrane permeability. Bioconjug Chem. 2007;18:2054–60.

    Article  CAS  PubMed  Google Scholar 

  25. Venuganti V, Sahdev P, Hildreth M, Guan X, Perumal O. Structure-skin permeability relationship of dendrimers. Pharm Res. 2011;28:2246–60.

    Article  CAS  PubMed  Google Scholar 

  26. Yang Y, Sunoqrot S, Stowell C, Ji J, Lee C, Kim JW, Khan SA, Hong S. Effect of size, surface charge and hydrophobicity of poly(amidoamine) dendrimers on their skin penetration. Biomacromolecules. 2012;13:2154–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jevprasesphant R, Penny J, Attwood D, McKeown NB, D’Emanuele A. Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity. Pharm Res. 2003;20:1543–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81260484) and the Program of Guangxi Provincial Natural Science Foundation of China (2013GXNSFAA019226).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengyun Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, C., Gu, J., Lv, Y. et al. Improved intestinal absorption of water-soluble drugs by acetylation of G2 PAMAM dendrimer nanocomplexes in rat. Drug Deliv. and Transl. Res. 7, 408–415 (2017). https://doi.org/10.1007/s13346-017-0373-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-017-0373-8

Keywords

Navigation