Skip to main content

Advertisement

Log in

Synthesis and characterization of chitosan-grafted-polycaprolactone micelles for modulate intestinal paclitaxel delivery

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

In this work, self-assembled amphiphilic micelles based on chitosan (CS) and polycaprolactone (PCL) were produced and used as carriers of paclitaxel (PTX) to improve its intestinal pharmacokinetic profile. Chitosan-grafted-polycaprolactone (CS-g-PCL) was synthesized through a carbodiimide reaction by amidation and confirmed by Fourier transform infrared spectroscopy (FTIR), hydrogen nuclear magnetic resonance analysis (1H NMR), and contact angle evaluation. Micelles were produced by solvent evaporation method, and the critical micelle concentration was investigated by conductimetry. The obtained micelles were of 408-nm mean particle size, narrow size distribution (polydispersity index of 0.335) and presented positive surface charge around 30 mV. The morphology of micelles assessed by transmission electron microscopy (TEM) revealed round and smooth surface, in agreement with dynamic light scattering measurements. The association efficiency determined by high-performance liquid chromatography (HPLC) was as high as 82%. The in vitro cytotoxicity of the unloaded and PTX-loaded micelles was tested against Caco-2 and HT29-MTX intestinal epithelial cells, resulting in the absence of cell toxicity for all formulations. Moreover, the permeability of PTX-loaded micelles in Caco-2 monolayer and Caco-2/HT29-MTX co-culture model was determined. Results showed that the permeability of PTX was higher in Caco-2/HT29-MTX co-culture model compared with Caco-2 monolayer due to the mucoadhesive character of micelles, acting as a platform to deliver PTX at the sites of absorption. Therefore, it can be concluded that the PTX-loaded CS-g-PCL micelles, employed for the first time as PTX carriers, may be a potential drug carrier for the intestinal delivery of hydrophobic drugs, particularly anticancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mo R, Jin X, Li N, Ju C, Sun M, Zhang C, et al. The mechanism of enhancement on oral absorption of paclitaxel by N-octyl-O-sulfate chitosan micelles. Biomaterials. 2011;32(20):4609–20.

    Article  CAS  PubMed  Google Scholar 

  2. Malingré MM, Beijnen JH, Schellens JH. Oral delivery of taxanes. Invest New Drug. 2001;19(2):155–62.

    Article  Google Scholar 

  3. Sparreboom A, Van Asperen J, Mayer U, Schinkel AH, Smit JW, Meijer DK, et al. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci. 1997;94(5):2031–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rowinsky E, Wright M, Monsarrat B, Lesser G, Donehower RC. Taxol:Pharmacology, metabolism and clinical implications. Cancer Surv. 1993;17:283–304.

  5. Rowinsky EK, Onetto N, Canetta RM, Arbuck SG. Taxol: the first of the taxanes, an important new class of antitumor agents. Semin Oncol. 1992;19(6):646–62.

    CAS  PubMed  Google Scholar 

  6. Singla AK, Garg A, Aggarwal D. Paclitaxel and its formulations. Int J Pharm. 2002;235(1):179–92.

    Article  CAS  PubMed  Google Scholar 

  7. Huo M, Zhang Y, Zhou J, Zou A, Yu D, Wu Y, et al. Synthesis and characterization of low-toxic amphiphilic chitosan derivatives and their application as micelle carrier for antitumor drug. Int J Pharm. 2010;394(1):162–73.

    Article  CAS  PubMed  Google Scholar 

  8. Landry F, Bazile D, Spenlehauer G, Veillard M, Kreuter J. Degradation of poly (D, L-lactic acid) nanoparticles coated with albumin in model digestive fluids (USP XXII). Biomaterials. 1996;17(7):715–23.

    Article  CAS  PubMed  Google Scholar 

  9. Pillai G. Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development. SOJ Pharm Pharm Sci. 2014;1(2):13.

    Google Scholar 

  10. Duan K, Zhang X, Tang X, Yu J, Liu S, Wang D, et al. Fabrication of cationic nanomicelle from chitosan-graft-polycaprolactone as the carrier of 7-ethyl-10-hydroxy-camptothecin. Colloids Surf B Biointerfaces. 2010;76(2):475–82.

    Article  CAS  PubMed  Google Scholar 

  11. Gu C, Le V, Lang M, Liu J. Preparation of polysaccharide derivates chitosan-graft-poly (ɛ-caprolactone) amphiphilic copolymer micelles for 5-fluorouracil drug delivery. Colloids Surf B Biointerfaces. 2014;116:745–50.

    Article  CAS  PubMed  Google Scholar 

  12. Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res. 2007;24(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  13. Ahmad Z, Shah A, Siddiq M, Kraatz H-B. Polymeric micelles as drug delivery vehicles. RSC Adv. 2014;4(33):17028–38.

    Article  CAS  Google Scholar 

  14. Joshi N, Saha R, Shanmugam T, Balakrishnan B, More P, Banerjee R. Carboxymethyl-chitosan-tethered lipid vesicles: hybrid nanoblanket for oral delivery of paclitaxel. Biomacromolecules. 2013;14(7):2272–82.

    Article  CAS  PubMed  Google Scholar 

  15. Dash M, Chiellini F, Ottenbrite R, Chiellini E. Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci. 2011;36(8):981–1014.

    Article  CAS  Google Scholar 

  16. Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliver Rev. 2010;62(1):3–11.

    Article  CAS  Google Scholar 

  17. Sosnik A, das Neves J, Sarmento B. Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: a review. Prog Polym Sci. 2014;39(12):2030–75.

    Article  CAS  Google Scholar 

  18. Hsu L-W, Lee P-L, Chen C-T, Mi F-L, Juang J-H, Hwang S-M, et al. Elucidating the signaling mechanism of an epithelial tight-junction opening induced by chitosan. Biomaterials. 2012;33(26):6254–63.

    Article  CAS  PubMed  Google Scholar 

  19. Silva DS, Delezuk JA, La Porta FA, Longo E, Campana-Filho SP. Comparison of experimental and theoretical data on the structural and electronic characterization of chitin and chitosan. Curr Phys Chem. 2015;5(3):206–13.

    Article  CAS  Google Scholar 

  20. Wiens M, Elkhooly TA, Schröder H-C, Mohamed TH, Müller WE. Characterization and osteogenic activity of a silicatein/biosilica-coated chitosan-graft-polycaprolactone. Acta Biomater. 2014;10(10):4456–64.

    Article  CAS  PubMed  Google Scholar 

  21. Khan AM, Shah SS. Determination of critical micelle concentration (CMC) of sodium dodecyl sulfate (SDS) and the effect of low concentration of pyrene on its CMC using ORIGIN software. J Chem Soc Pak. 2008;30(2):186.

    CAS  Google Scholar 

  22. Rao JP, Geckeler KE. Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci. 2011;36(7):887–913.

    Article  CAS  Google Scholar 

  23. Antunes F, Andrade F, Araújo F, Ferreira D, Sarmento B. Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. Eur J Pharm Biopharm. 2013;83(3):427–35.

    Article  CAS  PubMed  Google Scholar 

  24. Araújo F, Sarmento B. Towards the characterization of an in vitro triple co-culture intestine cell model for permeability studies. Int J Pharm. 2013;458(1):128–34.

    Article  PubMed  Google Scholar 

  25. Van de Velde K, Kiekens P. Structure analysis and degree of substitution of chitin, chitosan and dibutyrylchitin by FT-IR spectroscopy and solid state 13 C NMR. Carbohydr Polym. 2004;58(4):409–16.

    Article  CAS  Google Scholar 

  26. Le Tien C, Lacroix M, Ispas-Szabo P, Mateescu M-A. N-acylated chitosan: hydrophobic matrices for controlled drug release. J Control Release. 2003;93(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  27. Brinkley M. A brief survey of methods for preparing protein conjugates with dyes, haptens and crosslinking reagents. Bioconjug Chem. 1992;3(1):2–13.

    Article  CAS  PubMed  Google Scholar 

  28. Elzein T, Nasser-Eddine M, Delaite C, Bistac S, Dumas P. FTIR study of polycaprolactone chain organization at interfaces. J Colloid Interface Sci. 2004;273(2):381–7.

    Article  CAS  PubMed  Google Scholar 

  29. Yu H, Wang W, Chen X, Deng C, Jing X. Synthesis and characterization of the biodegradable polycaprolactone-graft-chitosan amphiphilic copolymers. Biopolymers. 2006;83(3):233–42.

    Article  CAS  PubMed  Google Scholar 

  30. Lee K, Kwon I, Kim Y-H, Jo W, Jeong S. Preparation of chitosan self-aggregates as a gene delivery system. J Control Release. 1998;51(2):213–20.

    Article  CAS  PubMed  Google Scholar 

  31. Trivedi R, Kompella UB. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine. 2010;5(3):485–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang X-H, Tian Q, Wang W, Zhang C-N, Wang P, Yuan Z. In vitro evaluation of polymeric micelles based on hydrophobically-modified sulfated chitosan as a carrier of doxorubicin. J Mater Sci Mater Med. 2012;23(7):1663–74.

    Article  CAS  PubMed  Google Scholar 

  33. Hu F-Q, Ren G-F, Yuan H, Du Y-Z, Zeng S. Shell cross-linked stearic acid grafted chitosan oligosaccharide self-aggregated micelles for controlled release of paclitaxel. Colloids Surf B Biointerfaces. 2006;50(2):97–103.

    Article  CAS  PubMed  Google Scholar 

  34. Zhu H, Liu F, Guo J, Xue J, Qian Z, Gu Y. Folate-modified chitosan micelles with enhanced tumor targeting evaluated by near infrared imaging system. Carbohydr Polym. 2011;86(3):1118–29.

    Article  CAS  Google Scholar 

  35. Danhier F, Lecouturier N, Vroman B, Jérôme C, Marchand-Brynaert J, Feron O, et al. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. J Control Release. 2009;133(1):11–7.

    Article  CAS  PubMed  Google Scholar 

  36. Garinot M, Fiévez V, Pourcelle V, Stoffelbach F, des Rieux A, Plapied L, et al. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J Control Release. 2007;120(3):195–204.

    Article  CAS  PubMed  Google Scholar 

  37. Soppimath KS, Tan DW, Yang YY. pH-triggered thermally responsive polymer core–shell nanoparticles for drug delivery. Adv Mater. 2005;17(3):318–23.

    Article  CAS  Google Scholar 

  38. Muley P, Kumar S, El Kourati F, Kesharwani SS, Tummala H. Hydrophobically modified inulin as an amphiphilic carbohydrate polymer for micellar delivery of paclitaxel for intravenous route. Int J Pharm. 2016;500(1):32–41.

    Article  CAS  PubMed  Google Scholar 

  39. Duong HHP, Yung L-YL. Synergistic co-delivery of doxorubicin and paclitaxel using multi-functional micelles for cancer treatment. Int J Pharm. 2013;454(1):486–95.

    Article  CAS  PubMed  Google Scholar 

  40. Werner ME, Cummings ND, Sethi M, Wang EC, Sukumar R, Moore DT, et al. Preclinical evaluation of Genexol-PM, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2013;86(3):463–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Araújo F, Shrestha N, Shahbazi M-A, Fonte P, Mäkilä EM, Salonen JJ, et al. The impact of nanoparticles on the mucosal translocation and transport of GLP-1 across the intestinal epithelium. Biomaterials. 2014;35(33):9199–207.

    Article  PubMed  Google Scholar 

  42. Sgorla D, Almeida A, Azevedo C, Bunhak ÉJ, Sarmento B, Cavalcanti OA. Development and characterization of crosslinked hyaluronic acid polymeric films for use in coating processes. Int J Pharm. 2016;511(1):380–9.

    Article  CAS  PubMed  Google Scholar 

  43. ISO10993-05. Biological evaluation of medical devices—part 5: tests for in vitro cytotoxicity. Geneva: International Organization for Standardization; 2009.

    Google Scholar 

  44. Zhang L, He Y, Ma G, Song C, Sun H. Paclitaxel-loaded polymeric micelles based on poly (ɛ-caprolactone)-poly (ethylene glycol)-poly (ɛ-caprolactone) triblock copolymers: in vitro and in vivo evaluation. Nanomedicine: NBM. 2012;8(6):925–34.

    Article  CAS  Google Scholar 

  45. Grès M-C, Julian B, Bourrié M, Meunier V, Roques C, Berger M, et al. Correlation between oral drug absorption in humans, and apparent drug permeability in TC-7 cells, a human epithelial intestinal cell line: comparison with the parental Caco-2 cell line. Pharm Res. 1998;15(5):726–33.

    Article  PubMed  Google Scholar 

  46. Lesuffleur T, Barbat A, Dussaulx E, Zweibaum A. Growth adaptation to methotrexate of HT-29 human colon carcinoma cells is associated with their ability to differentiate into columnar absorptive and mucus-secreting cells. Cancer Res. 1990;50(19):6334–43.

    CAS  PubMed  Google Scholar 

  47. Yeh T-H, Hsu L-W, Tseng MT, Lee P-L, Sonjae K, Ho Y-C, et al. Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials. 2011;32(26):6164–73.

    Article  CAS  PubMed  Google Scholar 

  48. Lin Y-H, Mi F-L, Chen C-T, Chang W-C, Peng S-F, Liang H-F, et al. Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules. 2007;8(1):146–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financed by Fundo Europeu de Desenvolvimento Regional (FEDER) funds through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalization (POCI), Portugal 2020 (NORTE-01-0145-FEDER-000012), and by Portuguese funds through Fundação para a Ciência e a Tecnologia (FCT)/Ministério da Ciência, Tecnologia e Inovação in the framework of the project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274). This research was also partially supported by CESPU/IINFACTS under the project NanoGum-CESPU-2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Sarmento.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, A., Silva, D., Gonçalves, V. et al. Synthesis and characterization of chitosan-grafted-polycaprolactone micelles for modulate intestinal paclitaxel delivery. Drug Deliv. and Transl. Res. 8, 387–397 (2018). https://doi.org/10.1007/s13346-017-0357-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-017-0357-8

Keywords

Navigation