Skip to main content

Advertisement

Log in

Nanoengineered strategies for siRNA delivery: from target assessment to cancer therapeutic efficacy

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The promise of RNA interference (RNAi) technology in cancer therapeutics aims to deliver small interfering RNA (siRNA) for silencing of gene expression in cell type-specific pathway. However, the challenge for the delivery of stable siRNA is hindered by an immune-hostile tumor microenvironment and physiological barriers of the circulatory system. Therefore, the development and validation of safe, stable, and efficient nanoengineered delivery systems are highly essential for effective delivery of siRNA into cancer cells. This review focuses on gene-silencing mechanisms, challenges to siRNA delivery, design and delivery of nanocarrier systems, ongoing clinical trials, and translational prospects for siRNA-mediated cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Caner J Clin. 2016;66:7–30.

    Article  Google Scholar 

  2. Bhargava A, Bunkar N, Khare NK, et al. Nanoengineered strategies to optimize dendritic cells for gastrointestinal tumor immunotherapy: from biology to translational medicine. Nanomedicine (Lond). 2014;9:2187–202.

    Article  CAS  Google Scholar 

  3. Neith C, Lage H. Induction of the ABC-transporters Mdr1/P-gp (Abcb1), mrpl (Abcc1), and bcrp (Abcg2) during establishment of multidrug resistance following exposure to mitoxantrone. J Chemother. 2005;17:215–23.

    Article  Google Scholar 

  4. Szakacs G, Paterson JK, Ludwig JA, et al. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5:219–34.

    Article  CAS  PubMed  Google Scholar 

  5. Gillet JP, Gottesman MM. Mechanisms of multidrug resistance in cancer. Methods Mol Biol. 2010;596:47–76.

    Article  CAS  PubMed  Google Scholar 

  6. Harris AL, Hochhauser D. Mechanisms of multidrug resistance in cancer treatment. Acta Oncol. 1992;31:205–13.

    Article  CAS  PubMed  Google Scholar 

  7. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP dependent transporters. Nat Rev Cancer. 2002;2:48–58.

    Article  CAS  PubMed  Google Scholar 

  8. Bhargava A, Mishra D, Banerjee S, et al. Dendritic cell engineering for tumor immunotherapy: from biology to clinical translation. Immunotherapy. 2012;4:703–18.

    Article  CAS  PubMed  Google Scholar 

  9. Huang A, Zhang X, Zhou SL, et al. Detecting circulating tumor DNA in hepatocellular carcinoma patients using droplet digital PCR is feasible and reflects intratumoral heterogeneity. J Cancer. 2016;13:1907–14.

    Article  Google Scholar 

  10. Gavrilov K, Saltzman WM. Therapeutic siRNA: principles, challenges, and strategies. Yale J Biol Med. 2012;85:187–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov. 2009;8:129–38.

    Article  CAS  PubMed  Google Scholar 

  12. Fire A, SQ X, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.

    Article  CAS  PubMed  Google Scholar 

  13. CF X, Wang J. Delivery systems for siRNA drug development in cancer therapy. Asian. J Pharm Sci. 2015;10:1–12.

    Google Scholar 

  14. Lares MR, Rossi JJ, Ouellet DL. RNAi and small interfering RNAs in human disease therapeutic applications. Trends Biotechnol. 2010;28:570–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burnett JC, Rossi JJ. RNA-based therapeutics: current progress and future prospects. Chem Biol. 2012;19:60–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hannon GJ. RNA interference. Nature. 2002;418:244–51.

    Article  CAS  PubMed  Google Scholar 

  17. Wilda M, Fuchs U, Wossmann W, et al. Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene. 2002;21:5716–24.

    Article  CAS  PubMed  Google Scholar 

  18. Marnoor SA, Shelke SS. Targeted delivery and development of thereapeutic siRNA: a review. Int J Res Pharm Biomed Sci. 2013;4:1313–7.

    CAS  Google Scholar 

  19. Lee JM, Yoon TJ, Cho YS. Recent developments in nanoparticles based siRNA delivery for cancer therapy. Biomed Res Int. 2013:782041.

  20. Dominska M, Dykxhoorn DM. Breaking down the barriers: siRNA delivery and endosome escape. J Cell Sci. 2010;123:1183–9.

    Article  CAS  PubMed  Google Scholar 

  21. Williford JM, Wu J, Ren Y, et al. Recent advances in nanoparticle-mediated siRNA delivery. Annu Rev Biomed Eng. 2014;16:347–70.

    Article  CAS  PubMed  Google Scholar 

  22. Tang G. siRNA and miRNA: an insight into RISCs. Trends Biochem Sci. 2005;30:106–14.

    Article  CAS  PubMed  Google Scholar 

  23. Grimm D. Small silencing RNAs: state of the art. Adv Drug Deliv Rev. 2009;61:672–703.

    Article  CAS  PubMed  Google Scholar 

  24. McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet. 2002;3:737–47.

    Article  CAS  PubMed  Google Scholar 

  25. Wang J, Lu Z, Wientjes MG, JLS A. Delivery of siRNA therapeutics: barriers and carriers. AAPS J. 2010;12:492–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fattal E, Bochot A. Ocular delivery of nucleic acids: antisense oligonucleotides, aptamers and siRNA. Adv Drug Deliv Rev. 2006;58:1203–23.

    Article  CAS  PubMed  Google Scholar 

  27. Thomas M, JJ L, Chen J, Klibanov AM. Non-viral siRNA delivery to the lung. Adv Drug Deliv Rev. 2007;59:124–33.

    Article  CAS  PubMed  Google Scholar 

  28. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Perez-Martinez FC, Guerra J, Posadas I, Cena V. Barriers to non-viral vector-mediated gene delivery in the nervous system. Pharm Res. 2011;28:1843–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jang SH, Wientjes MG, Lu D, Au JL. Drug delivery and transport to solid tumors. Pharm Res. 2003;20:1337–50.

    Article  CAS  PubMed  Google Scholar 

  31. Au JLS, Jang SH, Zheng J, Chen CT, Song S, Hu L, et al. Determinants of drug delivery and transport to solid tumors. J Control Rel. 2007;74:31–46.

    Article  Google Scholar 

  32. Greish K. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J Drug Target. 2007;15:457–64.

    Article  CAS  PubMed  Google Scholar 

  33. Danquah MK, Zhang XA, Mahato RI. Extravasation of polymeric nanomedicines across tumor vasculature. Adv Drug Deliv Rev. 2011;63:623–39.

    Article  PubMed  CAS  Google Scholar 

  34. Mukherjee S, Ghosh RN, Maxfield FR. Endocytosis. Physiol Rev. 1997;77:759–803.

    CAS  PubMed  Google Scholar 

  35. Goula D, Becker N, Lemkine GF, Normandie P, Rodrigues J, Mantero S, et al. Rapid crossing of the pulmonary endothelial barrier by polyethylenimine/DNA complexes. Gene Ther. 2000;7:499–504.

    Article  CAS  PubMed  Google Scholar 

  36. Schroeder A, Levins CG, Cortez C, Langer R, Anderson DG. Lipid-based nanotherapeutics for siRNA delivery. J Intern Med. 2010;267:9–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Endoh T, Ohtsuki T. Cellular siRNA delivery using cell penetrating peptides modified for endosomal escape. Adv Drug Deliv Rev. 2009;61:704–9.

    Article  CAS  PubMed  Google Scholar 

  38. Cho YW, Kim JD, Park K. Polycation gene delivery systems: escape from endosomes to cytosol. J Pharm Pharmacol. 2003;55:721–34.

    Article  CAS  PubMed  Google Scholar 

  39. Varkouhi AK, Scholte M, Storm G, Haisma HJ. Endosomal escape pathways for delivery of biologicals. J Control Rel. 2011;151:220–8.

    Article  CAS  Google Scholar 

  40. Kariko K, Bhuyan P, Capodici J, et al. Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J Immunol. 2004;172:6545–9.

    Article  CAS  PubMed  Google Scholar 

  41. Marques JT, Williams BR. Activation of the mammalian immune system by siRNAs. Nat Biotechnol. 2005;23:1399–405.

    Article  CAS  PubMed  Google Scholar 

  42. Judge AD, Sood V, Shaw JR, et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol. 2005;23:457–62.

    Article  CAS  PubMed  Google Scholar 

  43. Miele E, Spinelli GP, Miele E, et al. Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy. Int J Nanomedicine. 2012;7:3637–57.

    PubMed  PubMed Central  Google Scholar 

  44. Cun D, Jensen LB, Nielsen HM, et al. Polymeric nanocarriers for siRNA delivery: challenges and future prospects. J Biomed Nanotech. 2008;4:258–75.

    Article  CAS  Google Scholar 

  45. Harborth J, Elbashir SM, Vandenburgh K, Manninga H, Scaringe SA, Weber K, et al. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev. 2003;13:83–105.

    Article  CAS  PubMed  Google Scholar 

  46. Takasaki S, Kotani S, Konagaya A. Selecting effective siRNA target sequences for mammalian genes. RNA Biol. 2005;2:21–7.

    Article  CAS  PubMed  Google Scholar 

  47. Taxman DJ, Livingstone LR, Zhang J, Conti BJ, Iocca HA, Williams KL, et al. Criteria for effective design, construction, and gene knockdown by shRNA vectors. BMC Biotechnol. 2006;6:7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Fakhr E, Zare F, Teimoori-Toolabi L. Precise and efficient siRNA design: a key point in competent gene silencing. Cancer Gene Ther. 2016;23:73–82.

    Article  CAS  PubMed  Google Scholar 

  49. Elbashir SM, Harborth J, Weber K, Tuschl T. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods. 2002;26:199–213.

    Article  CAS  PubMed  Google Scholar 

  50. Tafer H, Ameres SL, Obernosterer G, Gebeshuber CA, Schroeder R, Martinez J, et al. The impact of target site accessibility on the design of effective siRNAs. Nat Biotechnol. 2008;26:578–83.

    Article  CAS  PubMed  Google Scholar 

  51. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002;296:550–3.

    Article  CAS  PubMed  Google Scholar 

  52. Miyagishi M, Taira K. U6 promoter–driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol. 2002;20:497–500.

    Article  CAS  PubMed  Google Scholar 

  53. Song E, Lee S-K, Wang J, Ince N, Ouyang N, Min J, et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med. 2003;9:347–51.

    Article  CAS  PubMed  Google Scholar 

  54. Kim YJ. Computational siRNA design considering alternative splicing. Methods Mol Biol. 2010;623:81–92.

    Article  CAS  PubMed  Google Scholar 

  55. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design for RNA interference. Nat Biotechnol. 2004;22:326–30.

    Article  CAS  PubMed  Google Scholar 

  56. Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A, et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 2004;32:936–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Amarzguioui M, Prydz H. An algorithm for selection of functional siRNA sequences. Biochem Biophys Res Commun. 2004;316:1050–8.

    Article  CAS  PubMed  Google Scholar 

  58. Dubey P, Gopinath P. Nanocarriers for AKT siRNA based gene therapy. Austin J. Biotechnol Bioeng. 2016;3:1061–3.

    Google Scholar 

  59. YK O, Park TG. siRNA delivery systems for cancer treatment. Adv Drug Deliv Rev. 2009;61:850–62.

    Article  CAS  Google Scholar 

  60. Juliano R, Alam MR, Dixit V, et al. Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides. Nucleic Acids Res. 2008;36:4158–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Romberg B, Hennink WE, Storm G. Sheddable coatings for long-circulating nanoparticles. Pharm Res. 2008;25:55–71.

    Article  CAS  PubMed  Google Scholar 

  62. Kanasty R, Dorkin JR, Vegas A, et al. Delivery materials for siRNA therapeutics. Nat Mater. 2013;12:967–77.

    Article  CAS  PubMed  Google Scholar 

  63. Mishra P, Nayak B, Dey RK. PEGylation in anti-cancer therapy: an overview. Asian. J Pharm Sci. 2016;11:337–48.

    Google Scholar 

  64. Li J, Wang Y, Xue S, et al. Effective combination treatment of lung cancer cells by single vehicular delivery of siRNA and different anticancer drugs. Int J Nanomedicine. 2016;11:4609–24.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Uchida E, Mizuguchi H, Ishii-Watabe A, Hayakawa T. Comparison of the efficiency and safety of non-viral vector-mediated gene transfer into a wide range of human cells. Biol Pharm Bull. 2002;25:891–7.

    Article  CAS  PubMed  Google Scholar 

  66. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4:145–60.

    Article  CAS  PubMed  Google Scholar 

  67. Gomes-da-Silva LC, Fonseca NA, Moura V, et al. Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges. Acc Chem Res. 2012;45:1163–71.

    Article  CAS  PubMed  Google Scholar 

  68. Adler-Moore J, Proffitt RT. AmBisome: liposomal formulation, structure, mechanism of action and pre-clinical experience. J Antimicrob Chemother. 2002;49:21–30.

    Article  CAS  PubMed  Google Scholar 

  69. Elouahabi A, Ruysschaert JM. Formation and intracellular trafficking of lipoplexes and polyplexes. Molecular Ther. 2005;11:336–47.

    Article  CAS  Google Scholar 

  70. Fenske DB, Cullis PR. Liposomal nanomedicines. Exp Opin Drug Del. 2008;5:25–44.

    Article  CAS  Google Scholar 

  71. SY W, McMillan NAJ. Lipidic systems for in vivo siRNA delivery. AAPS J. 2009;11:639–52.

    Article  CAS  Google Scholar 

  72. Tseng YC, Mozumdar S, Huang L. Lipid-based systemic delivery of siRNA. Adv Drug Deliv Rev. 2009;61:721–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jeong JH, Park TG, Kim SH. Self-assembled and nanostructured siRNA delivery systems. Pharm Res. 2011;28:2072–85.

    Article  CAS  PubMed  Google Scholar 

  74. Balazs DA, Godbey W. Liposomes for use in gene delivery. J Drug Deliv. 2011;326497

  75. Santel A, Aleku M, Keil O, et al. RNA interference in the mouse vascular endothelium by systemic administration of siRNA-lipoplexes for cancer therapy. GeneTher. 2006a;13:1360–70.

    CAS  Google Scholar 

  76. Santel A, Aleku M, Keil O, et al. A novel siRNA-lipoplex technology for RNA interference in the mouse vascular endothelium. GeneTher. 2006b;13:1222–34.

    CAS  Google Scholar 

  77. Uner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine. 2007;2:289–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Morrissey DV, Lockridge JA, Shaw L, et al. Potent andpersistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol. 2005;23:1002–7.

    Article  CAS  PubMed  Google Scholar 

  79. Jin J, Bae KH, Yang H, et al. In vivo specific delivery of c-Met siRNA to glioblastoma using cationic solid lipid nanoparticles. Bioconjug Chem. 2011;22:2568–72.

    Article  CAS  PubMed  Google Scholar 

  80. Shen H, Sun T, Ferrari M. Nanovector delivery of siRNA for cancer therapy. Cancer Gene Ther. 2012;19:367–73.

    Article  CAS  PubMed  Google Scholar 

  81. Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov Today. 2003;8:1112–20.

    Article  CAS  PubMed  Google Scholar 

  82. Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: past, present and future. Nature Rev Drug Discovery. 2004;3:1023–35.

    Article  CAS  Google Scholar 

  83. Davis ME. Design and development of IT-101, a cyclodextrin-containing polymer conjugate of camptothecin. Adv Drug Deliv Rev. 2009;61:1189–92.

    Article  CAS  PubMed  Google Scholar 

  84. Kang JH, Tachibana Y, Kamata W, et al. Liver targeted siRNA delivery by polyethylenimine (PEI)-pullulan carrier. Bioorg Med Chem. 2010;18:3946–50.

    Article  CAS  PubMed  Google Scholar 

  85. Hobel S, Koburger I, John M, et al. Polyethylenimine/small interfering RNA-mediated knockdown of vascular endothelial growth factor in vivo exerts anti-tumor effects synergistically with Bevacizumab. J Gene Med. 2010;12:287–300.

    PubMed  Google Scholar 

  86. Yuan X, Naguib SWZ. Recent advances of siRNA delivery by nanoparticles. Expert Opin Drug Del. 2011;8:521–36.

    Article  CAS  Google Scholar 

  87. Howard KA, Rahbek UL, Liu X, et al. RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticles system. MolecularTher. 2006;14:476–84.

    CAS  Google Scholar 

  88. Liu X, Howard KA, Dong M, et al. The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Biomaterials. 2007;28:1280–8.

    Article  CAS  PubMed  Google Scholar 

  89. Jean M, Smaoui F, Lavertu M, et al. Chitosan-plasmid nanoparticle formulations for IM and SC delivery of recombinant FGF-2 and PDGF-BB or generation of antibodies. Gene Ther. 2009;16:1097–110.

    Article  CAS  PubMed  Google Scholar 

  90. Singh M, Briones M, Ott G, et al. Cationic microparticles: a potent delivery system for DNA vaccines. Proc Natl Acad Sci. 2000;97:811–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Luu YK, Kim K, Hsiao BS, et al. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLAePEG block copolymers. J Control Rel. 2003;89:341–53.

    Article  CAS  Google Scholar 

  92. Sun TM, JZ D, Yan LF, et al. Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Biomaterials. 2008;29:4348–55.

    Article  CAS  PubMed  Google Scholar 

  93. Mao CQ, JZ D, Sun TM, et al. A biodegradable amphiphilic and cationic triblock copolymer for the delivery of siRNA targeting the acid ceramidase gene for cancer therapy. Biomaterials. 2011;32:3124–33.

    Article  CAS  PubMed  Google Scholar 

  94. Cheng YY, ZH X, Ma ML, Xu TW. Dendrimers as drug carriers: applications in different routes of drug administration. J Pharm Sci. 2008;97:123–43.

    Article  CAS  PubMed  Google Scholar 

  95. Esfand R, Tomalia DA. Poly (amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today. 2001;6:427–36.

    Article  CAS  PubMed  Google Scholar 

  96. Pantarotto D, Singh R, McCarthy D, et al. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem. 2004;43:5242–6.

    Article  CAS  Google Scholar 

  97. Cai D, Mataraza JM, Qin ZH, et al. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Methods. 2005;2:449–54.

    Article  CAS  PubMed  Google Scholar 

  98. Peng XH, Qian X, Mao H, et al. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomedicine. 2008;3:311–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Yu Y, Sun D. Superparamagnetic iron oxide nanoparticles theranostics for multimodality tumor imaging, gene delivery, targeted drug and prodrug delivery. Expert Rev Clin Pharmacol. 2010;3:117–30.

    Article  CAS  PubMed  Google Scholar 

  100. Derfus AM, Chen AA, Min DH, Ruoslahti E, Bhatia SN. Targeted quantum dot conjugates for siRNA delivery. Bioconjug Chem. 2007;18:1391–6.

    Article  CAS  PubMed  Google Scholar 

  101. Tan WB, Jiang S, Zhang Y. Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials. 2007;28:1565–71.

    Article  CAS  PubMed  Google Scholar 

  102. Yezhelyev MV, Qi L, O’Regan RM, Nie S, Gao X. Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging. J Am Chem Soc. 2008;130:9006–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Smith AM, Duan H, Mohs AM, Nie S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Del Rev. 2008;60:1226–40.

    Article  CAS  Google Scholar 

  104. Rosi NL, Giljohann DA, Thaxton CS, et al. Oligonucleotide-modified gold nanoparticles for infracellular gene regulation. Science. 2006;312:1027–30.

    Article  CAS  PubMed  Google Scholar 

  105. Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Del Rev. 2008;60:1307–15.

    Article  CAS  Google Scholar 

  106. Kong WH, Bae KH, Jo SD, Kim JS, Park TG. Cationic lipid-coated gold nanoparticles as efficient and noncytotoxic intracellular siRNA delivery vehicles. Pharm Res. 2012;29:362–74.

    Article  CAS  PubMed  Google Scholar 

  107. Jeong JH, Mok H, YK O, et al. siRNA conjugate delivery systems. Bioconjug Chem. 2008;20:5–14.

    Article  CAS  Google Scholar 

  108. Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 2004;432:173–8.

    Article  CAS  PubMed  Google Scholar 

  109. Chiu YL, Ali A, Chu C, et al. Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem Biol. 2004;11:1165–75.

    Article  CAS  PubMed  Google Scholar 

  110. Moschos SA, Jones SW, Perry MM, et al. Lung delivery studies using siRNA conjugated to TAT (48-60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug Chem. 2007;18:1450–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    Article  CAS  PubMed  Google Scholar 

  112. Simpson RJ, Lim JWE, Moritz RL, et al. Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics. 2009;6:267–83.

    Article  CAS  PubMed  Google Scholar 

  113. Bhargava A, Mishra D, Banerjee S, et al. Engineered dendritic cells for gastrointestinal tumor immunotherapy: opportunities in translational research. J Drug Target. 2013;21:126–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Kumar Mishra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, D.K., Balekar, N. & Mishra, P.K. Nanoengineered strategies for siRNA delivery: from target assessment to cancer therapeutic efficacy. Drug Deliv. and Transl. Res. 7, 346–358 (2017). https://doi.org/10.1007/s13346-016-0352-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-016-0352-5

Keywords

Navigation