Skip to main content

Advertisement

Log in

Polymeric nanocapsules: a potential new therapy for corneal wound healing

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Corneal injuries are one of the most frequently observed ocular diseases, leading to permanent damage and impaired vision if they are not treated properly. In this sense, adequate wound healing after injury is critical for keeping the integrity and structure of the cornea. The goal of this work was to assess the potential of polymeric nanocapsules, either unloaded or loaded with cyclosporine A or vitamin A, alone or in combination with mitomycin C, for the treatment of corneal injuries induced by photorefractive keratectomy surgery. The biopolymers selected for the formation of the nanocapsules were polyarginine and protamine, which are known for their penetration enhancement effect. The results showed that, following topical instillation to a mouse model of corneal injury, all the nanocapsule formulations, either unloaded or loaded with cyclosporine A or vitamin A, were able to stimulate corneal wound healing. In addition, the healing rate observed for the combination of unloaded protamine nanocapsules with mitomycin C was comparable to the one observed for the positive control Cacicol®, a biopolymer known as a corneal wound healing enhancer. Regarding the corneal opacity, the initial grade of corneal haze (>3) induced by the photorefractive keratectomy was more rapidly reduced in the case of the positive control, Cacicol®, than in corneas treated with the nanocapsules. In conclusion, this work shows that drug-free arginine-rich (polyarginine, protamine) nanocapsules exhibit a positive behavior with regard to their potential use for corneal wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Wilson, L. Tan, Nanostructures overcoming the ocular barrier: physiological considerations and mechanistic issues. In: Nanostructured Biomater. Overcoming Biol. Barriers, 2012: pp. 173–189.

  2. Zeppieri M, Salvetat ML, Beltrami AP, Cesselli D, Bergamin N, Russo R, et al. Human adipose-derived stem cells for the treatment of chemically burned rat cornea: preliminary results. Curr Eye Res. 2013;38:451–63. doi:10.3109/02713683.2012.763100.

    Article  CAS  PubMed  Google Scholar 

  3. Fini ME, Stramer BM. How the cornea heals: cornea-specific repair mechanisms affecting surgical outcomes. Cornea. 2005;24:S2–11.

    Article  PubMed  Google Scholar 

  4. Ljubimov M, Saghizadeh AV. Progress in corneal wound healing. Prog Retin Eye Res. 2015;49:1–28. doi:10.1016/j.preteyeres.2015.07.002.

    Article  CAS  Google Scholar 

  5. Ashby BD, Garrett Q, Willcox MD. Corneal injuries and wound healing—review of processes and therapies. Austin J Clin Ophthalmol. 2014;1:1–25.

    Article  Google Scholar 

  6. Brignole-Baudouin F, Warnet J, Barritault D, Baudouin C. RGTA-based matrix therapy in severe experimental corneal lesions: safety and efficacy studies. J Fr Ophtalmol. 2013;36:740–7.

    Article  CAS  PubMed  Google Scholar 

  7. Cejkova J, Olmiere C, Cejka C, Trosan P, Holan V. The healing of alkali-injured cornea is stimulated by a novel matrix regenerating agent (RGTA, CACICOL20)—a biopolymer mimicking heparan sulfates reducing proteolytic, oxidative and nitrosative damage. Histol Histopathol. 2014;29:457–78. doi:10.14670/HH-29.10.457.

    CAS  PubMed  Google Scholar 

  8. Alcalde I, Íñigo-Portugués A, Carreño N, Riestra AC, Merayo-Lloves JM. Effects of new biomimetic regenerating agents on corneal wound healing in an experimental model of post-surgical corneal ulcers. Arch Soc Esp Oftalmol. 2015;90:467–74. doi:10.1016/j.oftale.2015.10.020.

    Article  CAS  PubMed  Google Scholar 

  9. Aslanides IM, Selimis VD, Bessis NV, Georgoudis PN. A pharmacological modification of pain and epithelial healing in contemporary transepithelial all-surface laser ablation (ASLA). Clin Ophthalmol. 2015;9:685–90. doi:10.2147/OPTH.S81061.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Aifa A, Gueudry J, Portmann A, Delcampe A, Muraine M. Topical treatment with a new matrix therapy agent (RGTA) for the treatment of corneal neurotrophic ulcers. Investig Ophthalmol Vis Sci. 2012;53:8181–5. doi:10.1167/iovs.12-10476.

    Article  CAS  Google Scholar 

  11. Losa C, Calvo P, Castro E, Vila-Jato JL, Alonso MJ. Improvement of ocular penetration of amikacin sulphate by association to poly(butylcyanoacrylate) nanoparticles. J Pharm Pharmacol. 1991;43:548–52.

    Article  CAS  PubMed  Google Scholar 

  12. Losa C, Marchal-Heussler L, Orallo F, Vila Jato JL, Alonso MJ. Design of new formulations for topical ocular administration: polymeric nanocapsules containing metipranolol. Pharm Res. 1993;10:80–7. doi:10.1023/A:1018977130559.

    Article  CAS  PubMed  Google Scholar 

  13. Calvo P, Thomas C, Alonso M, Vila-Jato JL, Robinson JR. Study of the mechanism of interaction of poly(ϵ-caprolactone) nanocapsules with the cornea by confocal laser scanning microscopy. Int J Pharm. 1994;103:283–91. doi:10.1016/0378-5173(94)90179-1.

    Article  CAS  Google Scholar 

  14. Calvo P, Vila-Jato JL, Alonso MJ. Comparative in vitro evaluation of several colloidal systems, nanoparticles, nanocapsules, and nanoemulsions, as ocular drug carriers. J Pharm Sci. 1996;85:530–6.

    Article  CAS  PubMed  Google Scholar 

  15. Calvo P, Alonso MJ, Vila-Jato JL, Robinson JR. Improved ocular bioavailability of indomethacin by novel ocular drug carriers. J Pharm Pharmacol. 1996;48:1147–52. doi:10.1111/j.2042-7158.1996.tb03911.x.

    Article  CAS  PubMed  Google Scholar 

  16. Calvo P, Sanchez A, Martinez J, Lopez MI, Calonge M, Pastor JC, et al. Polyester nanocapsules as new topical ocular delivery systems for cyclosporin A. Pharm Res. 1996;13:311–5.

    Article  CAS  PubMed  Google Scholar 

  17. Calvo P, Vila-Jato JL, Alonso MJ. Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers. Int J Pharm. 1997;153:41–50. doi:10.1016/S0378-5173(97)00083-5.

    Article  CAS  Google Scholar 

  18. De Campos AM, Sánchez A, Alonso MJ. Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int J Pharm. 2001;224:159–68.

    Article  PubMed  Google Scholar 

  19. De Campos AM, Sánchez A, Gref R, Calvo P, Alonso MJ. The effect of a PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa. Eur J Pharm Sci. 2003;20:73–81. doi:10.1016/S0928-0987(03)00178-7.

    Article  CAS  PubMed  Google Scholar 

  20. De Campos AM, Diebold Y, Carvalho ELS, Sanchez A, Alonso MJ. Chitosan nanoparticles as new ocular drug delivery systems: in vitro stability, in vivo fate, and cellular toxicity. Pharm Res. 2004;21:803–10.

    Article  PubMed  Google Scholar 

  21. Hornof M, de la Fuente M, Hallikainen M, Tammi RH, Urtti A. Low molecular weight hyaluronan shielding of DNA / PEI polyplexes facilitates CD44 receptor mediated uptake in human corneal epithelial cells. J Gene Med. 2008;10:70–80. doi:10.1002/jgm.

    Article  CAS  PubMed  Google Scholar 

  22. de la Fuente M, Seijo B, Alonso MJ. Bioadhesive hyaluronan-chitosan nanoparticles can transport genes across the ocular mucosa and transfect ocular tissue. Gene Ther. 2008;15:668–76. doi:10.1038/gt.2008.16.

    Article  CAS  PubMed  Google Scholar 

  23. Reimondez-Troitiño S, Csaba N, Alonso MJ, de la Fuente M. Nanotherapies for the treatment of ocular diseases. Eur J Pharm Biopharm. 2015. doi:10.1016/j.ejpb.2015.02.019.

    PubMed  Google Scholar 

  24. Huang Y, Park YS, Moon C, David AE, Chung HS, Yang VC. Synthetic skin-permeable proteins enabling needleless immunization. Angew Chemie. 2010;122:2784–7. doi:10.1002/ange.200906153.

    Article  Google Scholar 

  25. González-Aramundiz JV, Olmedo MP, González-Fernández Á, Fernández MJA, Csaba NS. Protamine-based nanoparticles as new antigen delivery systems. Eur J Pharm Biopharm. 2015;97:51–9. doi:10.1016/j.ejpb.2015.09.019.

    Article  CAS  PubMed  Google Scholar 

  26. Choi JK, Jang JH, Jang WH, Kim J, Bae IH, Bae J, et al. The effect of epidermal growth factor (EGF) conjugated with low-molecular-weight protamine (LMWP) on wound healing of the skin. Biomaterials. 2012;33:8579–90. doi:10.1016/j.biomaterials.2012.07.061.

    Article  CAS  PubMed  Google Scholar 

  27. Diebold Y, Jarrín M, Sáez V, Carvalho ELS, Orea M, Calonge M, et al. Ocular drug delivery by liposome-chitosan nanoparticle complexes (LCS-NP). Biomaterials. 2007;28:1553–64. doi:10.1016/j.biomaterials.2006.11.028.

    Article  CAS  PubMed  Google Scholar 

  28. Anitua E, Muruzabal F, Alcalde I, Merayo-Lloves J, Orive G. Plasma rich in growth factors (PRGF-Endoret) stimulates corneal wound healing and reduces haze formation after PRK surgery. Exp Eye Res. 2013;115:153–61. doi:10.1016/j.exer.2013.07.007.

    Article  CAS  PubMed  Google Scholar 

  29. Martínez-García MCC, Merayo-Llovés J, Blanco-Mezquita T, Mar-Sardaña S. Wound healing following refractive surgery in hens. Exp Eye Res. 2006;83:728–35. doi:10.1016/j.exer.2006.02.017.

    Article  CAS  PubMed  Google Scholar 

  30. Fantes FE, Hanna KD, Waring GO, Pouliquen Y, Thompson KP, Savoldelli M. Wound healing after excimer laser keratomileusis (photorefractive keratectomy) in monkeys. Arch Ophthalmol. 1990;108:665–75. doi:10.1001/archopht.1990.01070070051034.

    Article  CAS  PubMed  Google Scholar 

  31. Mohan RR, Stapleton WM, Sinha S, Netto MV, Wilson SE. A novel method for generating corneal haze in anterior stroma of the mouse eye with the excimer laser. Exp Eye Res. 2008;86:235–40. doi:10.1016/j.exer.2007.10.014.

    Article  CAS  PubMed  Google Scholar 

  32. Barbosa FL, Chaurasia SS, Cutler A, Asosingh K, Kaur H, de Medeiros FW, et al. Corneal myofibroblast generation from bone marrow-derived cells. Exp Eye Res. 2010;91:92–6. doi:10.1016/j.exer.2010.04.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Torricelli AAM, Wilson SE. Cellular and extracellular matrix modulation of corneal stromal opacity. Exp Eye Res. 2014;129:151–60. doi:10.1016/j.exer.2014.09.013.

    Article  CAS  PubMed  Google Scholar 

  34. Lim RR, Tan A, Liu Y-C, Barathi VA, Mohan RR, Mehta JS, et al. ITF2357 transactivates Id3 and regulate TGFβ/BMP7 signaling pathways to attenuate corneal fibrosis. Sci Rep. 2016;6:20841. doi:10.1038/srep20841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wilson SE. Corneal myofibroblast biology and pathobiology: generation, persistence, and transparency. Exp Eye Res. 2012;99:78–88. doi:10.1016/j.exer.2012.03.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Borthwick LA, Wynn TA, Fisher AJ. Cytokine mediated tissue fibrosis. Biochim Biophys Acta Mol Basis Dis. 2013;1832:1049–60. doi:10.1016/j.bbadis.2012.09.014.

    Article  CAS  Google Scholar 

  37. Luo Q, Zhao J, Zhang X, Pan W. Nanostructured lipid carrier (NLC) coated with chitosan oligosaccharides and its potential use in ocular drug delivery system. Int J Pharm. 2011;403:185–91. doi:10.1016/j.ijpharm.2010.10.013.

    Article  CAS  PubMed  Google Scholar 

  38. Park YJ, Liang JF, Ko KS, Kim SW, Yang VC. Low molecular weight protamine as an efficient and nontoxic gene carrier: in vitro study. J Gene Med. 2003;5:700–11. doi:10.1002/jgm.402.

    Article  CAS  PubMed  Google Scholar 

  39. Lozano MV, Torrecilla D, Torres D, Vidal A, Domínguez F, Alonso MJ. Highly efficient system to deliver taxanes into tumor cells: docetaxel-loaded chitosan oligomer colloidal carriers. Biomacromolecules. 2008;9:2186–93. doi:10.1021/bm800298u.

    Article  CAS  PubMed  Google Scholar 

  40. Oyarzun-Ampuero FA, Goycoolea FM, Torres D, Alonso MJ. A new drug nanocarrier consisting of polyarginine and hyaluronic acid. Eur J Pharm Biopharm. 2011;79:54–7. doi:10.1016/j.ejpb.2005.12.006.

    Article  CAS  PubMed  Google Scholar 

  41. Lozano MV, Lollo G, Alonso-Nocelo M, Brea J, Vidal A, Torres D, et al. Polyarginine nanocapsules: a new platform for intracellular drug delivery. J Nanopart Res. 2013;15:1515. doi:10.1007/s11051-013-1515-7.

    Article  CAS  Google Scholar 

  42. Oyarzun-Ampuero FA, Rivera-Rodríguez GR, Alonso MJ, Torres D. Hyaluronan nanocapsules as a new vehicle for intracellular drug delivery. Eur J Pharm Sci. 2013;49:483–90. doi:10.1016/j.ejps.2013.05.008.

    Article  CAS  PubMed  Google Scholar 

  43. Samarawickrama C, Chew S, Watson S. Retinoic acid and the ocular surface. Surv Ophthalmol. 2015;60:183–95. doi:10.1016/j.survophthal.2014.10.001.

    Article  PubMed  Google Scholar 

  44. Whitcher JP, Srinivasan M, Upadhyay MP. Corneal blindness: a global perspective. Bull World Health Organ. 2001;79:214–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Netto MV, Mohan RR, Sinha S, Sharma A, Dupps W, Wilson SE. Stromal haze, myofibroblasts, and surface irregularity after PRK. Exp Eye Res. 2006;82:788–97. doi:10.1016/j.exer.2005.09.021.

    Article  CAS  PubMed  Google Scholar 

  46. Meyer-ter-Vehn T, Han H, Grehn F, Schlunck G. Extracellular matrix elasticity modulates TGF-β-induced p38 activation and myofibroblast transdifferentiation in human tenon fibroblasts. Investig Ophthalmol Vis Sci. 2011;52:9149–55. doi:10.1167/iovs.10-6679.

    Article  Google Scholar 

  47. Dua HS, Gomes JA, Singh A. Corneal epithelial wound healing. Br J Ophthalmol. 1994;78:401–8. doi:10.1136/bjo.78.5.401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sumioka T, Okada Y, Reinach PS, Shirai K, Miyajima M, Yamanaka O, et al. Impairment of corneal epithelial wound healing in a TRPV1-deficient mouse. Investig Ophthalmol Vis Sci. 2014;55:3295–302. doi:10.1167/iovs.13-13077.

    Article  CAS  Google Scholar 

  49. Liang H, Baudouin C, Daull P, Garrigue J-S, Brignole-Baudouin F. Ocular safety of cationic emulsion of cyclosporine in an in vitro corneal wound-healing model and an acute in vivo rabbit model. Mol Vis. 2012;18:2195–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Klang SH, Siganos CS, Benita S, Frucht-Pery J. Evaluation of a positively charged submicron emulsion of piroxicam on the rabbit corneum healing process following alkali burn. J Control Release. 1999;57:19–27. doi:10.1016/S0168-3659(98)00107-2.

    Article  CAS  PubMed  Google Scholar 

  51. Kim EC, Kim TK, Park SH, Kim MS. The wound healing effects of vitamin A eye drops after a corneal alkali burn in rats. Acta Ophthalmol. 2012;90:e540–6. doi:10.1111/j.1755-3768.2012.02496.x.

    Article  PubMed  Google Scholar 

  52. Hattori M, Shimizu K, Katsumura K, Oku H, Sano Y, Matsumoto K, et al. Effects of all-trans retinoic acid nanoparticles on corneal epithelial wound healing. Graefes Arch Clin Exp Ophthalmol. 2012;250:557–63. doi:10.1007/s00417-011-1849-8.

    Article  CAS  PubMed  Google Scholar 

  53. Chowdhury S, Guha R, Trivedi R, Kompella UB, Konar A, Hazra S. Pirfenidone nanoparticles improve corneal wound healing and prevent scarring following alkali burn. PLoS One. 2013;8:e70528. doi:10.1371/journal.pone.0070528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Del Pero RA, Gigstad JE, Roberts AD, Klintworth GK, Martin CA, L’Esperance Jr FA, et al. A refractive and histopathologic study of excimer laser keratectomy in primates. Am J Ophthalmol. 1990;109:419–29. doi:10.1016/S0002-9394(14)74608-2.

    Article  PubMed  Google Scholar 

  55. Garana R, Petroll W, Chen W, Herman I, Barry P, Andrews P, et al. Radial keratotomy. II. Role of the myofibroblast in corneal wound contraction. Investig Ophtalmol Vis Sci. 1992;33:3271–82.

    CAS  Google Scholar 

  56. Zieske JD, Guimarães SR, Hutcheon AE. Kinetics of keratocyte proliferation in response to epithelial debridement. Exp Eye Res. 2001;72:33–9. doi:10.1006/exer.2000.0926.

    Article  CAS  PubMed  Google Scholar 

  57. Jester JV, Petroll WM, Cavanagh HD. Corneal stromal wound healing in refractive surgery: the role of myofibroblasts. Prog Retin Eye Res. 1999;18:311–56. doi:10.1016/S1350-9462(98)00021-4.

    Article  CAS  PubMed  Google Scholar 

  58. Barritault D, Caruelle J. Les agents de régénération (ou RGTAs): une nouvelle approche thérapeutique. Ann Pharm Fr. 2006;64:135–44.

    Article  CAS  PubMed  Google Scholar 

  59. Yang Y, Wolfram J, Fang X, Shen H, Ferrari M. Polyarginine induces an antitumor immune response through binding to toll-like receptor 4. Small. 2014;10:1250–4. doi:10.1002/smll.201302887.

    Article  CAS  PubMed  Google Scholar 

  60. Li XX, Jiang DY, Huang XX, Guo SL, Yuan W, Dai HP. Toll-like receptor 4 promotes fibrosis in bleomycin-induced lung injury in mice. Genet Mol Res. 2015;14:17391–8. doi:10.4238/2015.December.21.8.

    Article  CAS  PubMed  Google Scholar 

  61. Perr H, Drucker D, Cochran D, Diegelmann R, Lindblad W, Graham M. Protamine selectively inhibits collagen synthesis by human intestinal smooth muscle cells and other mesenchymal cells. J Cell Physiol. 1989;140:463–70.

    Article  CAS  PubMed  Google Scholar 

  62. Van Lith R, Yang J, Ameer GA. Diazeniumdiolation of protamine sulfate reverses mitogenic effects on smooth muscle cells and fibroblasts. Free Radic Biol Med. 2015;82:13–21. doi:10.1016/j.freeradbiomed.2015.01.022.

    Article  CAS  PubMed  Google Scholar 

  63. Pal-ghosh S, Pajoohesh-Ganji A, Tadvalkar G, Kyne BM, Guo X, Zieske JD, et al. Topical mitomycin-C enhances subbasal nerve regeneration and reduces erosion frequency in the debridement wounded mouse cornea. Exp Eye Res. 2015;146:361–9. doi:10.1016/j.exer.2015.08.023.

    Article  CAS  PubMed  Google Scholar 

  64. Bhawal UK, Lee H, Uchida R, Okumura S, Harayama S, Eguchi Y, et al. The pro-healing effect of protamine-hydrolysate peptides on skin wounds involves TGF-β/Smad signaling. J Hard Tissue Biol. 2015;24:91–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly financed by the Ministry of Economy and Competitiveness of Spain (SURFEYE RTC-2014-2375-1) and co-financed by FEDER Funds from the European Union.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jesús Merayo-Lloves or María J. Alonso.

Ethics declarations

All institutional and national guidelines for the care and use of laboratory animals were followed. The experiments comply with the current laws of the country in which they were performed.

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Sonia Reimondez-Troitiño and Ignacio Alcalde contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reimondez-Troitiño, S., Alcalde, I., Csaba, N. et al. Polymeric nanocapsules: a potential new therapy for corneal wound healing. Drug Deliv. and Transl. Res. 6, 708–721 (2016). https://doi.org/10.1007/s13346-016-0312-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-016-0312-0

Keywords

Navigation