Skip to main content
Log in

Enhanced insulin absorption from sublingual microemulsions: effect of permeation enhancers

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Microemulsions of insulin (50 IU/mL) comprising permeation enhancers were formulated for sublingual delivery. Circular dichroism (CD) spectra indicated conformational stability, while chemical stability was confirmed by high-performance liquid chromatography (HPLC). CD spectra of insulin in combination with permeation enhancers revealed attenuation of molar ellipticity at 274 nm in the order TCTP > TC-AOT > TC > TC-NMT > Sol P > insulin solution. The molar ellipticity ratios at 208/222 nm confirmed dissociation of insulin in the microemulsions with the same rank order. Matrix-assisted laser diffraction ionization mass spectra (MALDI) revealed a significant shift in intensity signals towards monomer and dimers with a substantially high ratio of monomers, especially in the presence of the TCTP and TC-AOT. Permeation through porcine sublingual mucosa correlated with the dissociation data. A high correlation between the ratio of molar ellipticity at 208/222 nm and serum glucose levels (r 2 > 0.958) and serum insulin levels (r 2 > 0.952) strongly suggests the role of dissociation of insulin on enhanced absorption. While all microemulsions revealed a reduction in serum glucose levels and increase in serum insulin levels, significant differences were observed with the TCTP and TC-AOT microemulsions. High pharmacological availability >60 % and bioavailability >55 % compared to subcutaneous insulin at a low dose of 2 IU/kg appears highly promising. The data clearly suggests the additional role of the permeation enhancers on dissociation of insulin on enhanced sublingual absorption from the microemulsions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Talegaonkar S et al. Microemulsions: a novel approach to enhanced drug delivery. Recent Patents Drug Deliv Formulation. 2008;2:238–57.

    Article  CAS  Google Scholar 

  2. Li L, Nandi I, Kim KH. Development of an ethyl laurate-based microemulsion for rapid-onset intranasal delivery of diazepam. Int J Pharm. 2007;237:77–85.

    Article  Google Scholar 

  3. Yin YM et al. Docetaxel microemulsion for enhanced oral bioavailability: preparation and in vitro and in vivo evaluation. J Control Release. 2009;140:86–94.

    Article  CAS  PubMed  Google Scholar 

  4. Sintov AC, Levy HV, Botner S. Systemic delivery of insulin via the nasal route using a new microemulsion system: in vitro and in vivo studies. J Control Release. 2010;148:168–76.

    Article  CAS  PubMed  Google Scholar 

  5. Kim CK, Ryuu SA, Park KM, Lim SL, Hwang SJ. Preparation and physicochemical characterization of phase inverted water/oil microemulsion containing cyclosporine A. Int J Pharm. 1996;147:131–4.

    Article  Google Scholar 

  6. Graf A, Jack KS, Whittaker AK, Hook SM, Rades T. Protein delivery using nanoparticles based on microemulsions with different structure-types. Eur j Pharm Sci. 2000;33:434–44.

    Article  Google Scholar 

  7. Kinesh VP, Neelam DP, Punit BP, Bhavesh SB, Pragna KS. Novel approaches for oral delivery of insulin and current status of oral insulin products. Int j Pharm Sci Nanotechnol. 2010;3:1057–64.

    CAS  Google Scholar 

  8. Sharma G, Wilson K, van der Walle CF, Sattar N, Petrie JR, Ravi Kumar MNV. Microemulsions for oral delivery of insulin: design, development and evaluation in streptozotocin induced diabetic rats. Eur J Pharm Biopharm. 2010;76:159–69.

    Article  CAS  PubMed  Google Scholar 

  9. Ilek AC, Elebi NC, Tırnaksız F, Tay A. A lecithin-based microemulsion of rh-insulin with aprotinin for oral administration: Investigation of hypoglycemic effects in non-diabetic and STZ-induced diabetic rats. Int J Pharm. 2005;298:176–85.

    Article  Google Scholar 

  10. George SM. Pfizer dumps exubera. Nat Biotechnol. 2007;25:1331–2.

    Article  Google Scholar 

  11. Aungst BJ, Rogers NJ, Shefter E. Comparison of nasal, rectal, buccal, sublingual and intramuscular insulin efficacy and the effects of a bile salt absorption promoter. J Pharmacol Exp Ther. 1988;244:23–7.

    CAS  PubMed  Google Scholar 

  12. Jie L et al. Solid lipid nanoparticles for pulmonary delivery of insulin. Int J Pharm. 2008;356:333–44.

    Article  Google Scholar 

  13. Mark MB, Eric MG, Eric JM, Cory B. Pure insulin nanoparticle agglomerates for pulmonary delivery. Langmuir. 2008;24:13614–20.

    Article  Google Scholar 

  14. Cui CY et al. Sublingual delivery of insulin: effects of enhancers on the mucosal lipid fluidity and protein conformation, transport, and in-vivo hypoglycaemic activity. Biol Pharm Bull. 2005;28:2279–88.

    Article  CAS  PubMed  Google Scholar 

  15. Peng H, Gao Q, Chen Q, Zhu Y, Huang KX. Hypoglycemic effects of insulin sublingual drops containing azone on rats and rabbits. Chinese Peptide Symposia. Session G. 2002;221–223.

  16. Cafalu WT. Concept strategies and feasibility of non-invasive insulin delivery. Diabetes Care. 2004;27:230–46.

    Google Scholar 

  17. Li Y, Shao Z, Mitra AK. Dissociation of insulin oligomers by bile salts micelles and its effect on α-chymotrypsin- mediated proteolytic degradation. Pharm Res. 1992;9:864–9.

    Article  CAS  PubMed  Google Scholar 

  18. Quinn R, Andrade JD. Minimizing the aggregation of neutral insulin solution. J Pharm Sci. 1983;72:1472–83.

    Article  CAS  PubMed  Google Scholar 

  19. Lovatt M, Cooper A, Camilleri P. Energetics of cyclodextrin-induced dissociation of insulin. Eur Biophys J. 1996;24:354–7.

    Article  CAS  PubMed  Google Scholar 

  20. Shao Z, Krishnamoorthy R, Mitra AK. Differential effects of anionic, cationic, non-ionic, and physiological surfactants on the dissociation, α-chymotryptic degradation and enteral absorption of insulin hexamers. Pharm Res. 1992;9:1157–63.

    Article  CAS  PubMed  Google Scholar 

  21. Pocker Y, Biswas SB. Self-association of insulin and the role of hydrophobic model of insulin dimerization. Biochemistry. 1981;20:4354–61.

    Article  CAS  PubMed  Google Scholar 

  22. Yong Z et al. A spectroscopic investigation into the interaction between bile salts and insulin in alkaline aqueous solution. J Colloid Interface Sci. 2009;337:322–31.

    Article  PubMed  Google Scholar 

  23. Kelly SM, Price NC. The use of circular dichroism in the investigation of protein structure and function. Curr Protein Pept Sci. 2000;1:349–84.

    Article  CAS  PubMed  Google Scholar 

  24. Smith GD, Swenson DC, Dodson E, Dodson GG, Reynolds CD. Structural stability in the 4-zinc human insulin hexamers. Proc Natl Acad Sci. 1984;81:7093–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Baker EN, Vijayan NM. The structure of 2Zn pig insulin crystals at 1.5 A resolution. Phil Trans R Soc Lond Biol. 1988;319:369–456.

    Article  CAS  Google Scholar 

  26. Derewenda U, Swenson D. Phenol stabilizes more helix in a new symmetrical zinc insulin hexamers. Nature. 1989;318:594–6.

    Article  Google Scholar 

  27. Ciszak E, Smith GD. Crystallographic evidence for dual coordination around zinc in the T3R3 human insulin hexamers. Biochemistry. 1994;33:1512–7.

    Article  CAS  PubMed  Google Scholar 

  28. Ciszak E, Beals JM, Frank BH, Baker JC, Carter ND, Smith GD. Role of C-terminal B-chain residues in insulin assembly: the structure of hexameric LysB28ProB29-human insulin. Structure. 1995;3:615–22.

    Article  CAS  PubMed  Google Scholar 

  29. Nettleton EJ et al. Characterization of the oligomeric states of insulin in self-assembly and amyloid fibril formation by mass spectrometry. Biophys J. 2000;79:1053–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Livadaris V, Blais JC, Tabet JC. Formation of non-specific protein cluster ion in matrix-assisted laser desorption/ionization: abundances and dynamical aspects. Eur J Mass Spectrum. 2000;6:409–13.

    Article  CAS  Google Scholar 

  31. Sheu MT, Chen SY, Chen LC, Ho HO. Influence of micelle solubilization by tocopheryl polyethylene glycol succinate (TPGS) on solubility enhancement and percutaneous penetration of estradiol. J Control Release. 2003;88:355–68.

    Article  CAS  PubMed  Google Scholar 

  32. Gupta RR, Jain SK, Varshney M. AOT water-in-oil microemulsions as a penetration enhancer in transdermal drug delivery of 5-fluorouracil. Colloids Surf B: Biointerfaces. 2005;41:25–32.

    Article  CAS  PubMed  Google Scholar 

  33. Collins P, Laffoon J, Squier CA. Comparative study of porcine oral epithelium. J Dent Res. 1981;60:543.

    Google Scholar 

  34. Sonaje K et al. Biodistribution, pharmacodynamics and pharmacokinetics of insulin analogues in a rat model: oral delivery using pH-Responsive nanoparticles vs. subcutaneous injection. Biomaterials. 2010;31:6849–58.

    Article  CAS  PubMed  Google Scholar 

  35. Wang X, Zheng C, Wu Z, Teng D, Zhang X, Wang Z, et al. Chitosan-NAC nanoparticles as a vehicle for nasal absorption enhancement of insulin. J Biomed Mater Res B Appl Biomater. 2009;88:150–61.

    Article  CAS  PubMed  Google Scholar 

  36. Wang J, Tabata Y, Morimoto K. Aminated gelatin microspheres as a nasal delivery system for peptide drugs: evaluation of in vitro release and in vivo insulin absorption in rats. J Control Release. 2006;113:31–7.

    Article  CAS  PubMed  Google Scholar 

  37. Jose S et al. Cross-linked chitosan microspheres for oral delivery of insulin: Taguchi design and in vivo testing. Colloids Surf B: Biointerfaces. 2012;92:175–9.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang X, Sun M, Zheng A, Cao D, Bi Y, Sun J. Preparation and characterization of insulin-loaded bioadhesive PLGA nanoparticles for oral administration. Eur J Pharm Sci. 2012;45:632–8.

    Article  CAS  PubMed  Google Scholar 

  39. Makhlof A, Tozuka Y, Takeuchi H. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. Eur J Pharm Sci. 2011;42:445–51.

    Article  CAS  PubMed  Google Scholar 

  40. Bellary S, Barnett AH. Inhaled insulin: new technology, new possibilities. Int J Clin Pract. 2006;60:728–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge University Grants Commission, Government of India for Grant and Fellowship to Nilam Patil. and USV Ltd. India for the gift sample of rh-insulin. We are also thankful to TIFR, India, for the help in the CD spectra and MALDI-MS study.

Conflict of interest

We do not have a financial relationship with the organization that sponsored the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padma V. Devarajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, N.H., Devarajan, P.V. Enhanced insulin absorption from sublingual microemulsions: effect of permeation enhancers. Drug Deliv. and Transl. Res. 4, 429–438 (2014). https://doi.org/10.1007/s13346-014-0205-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-014-0205-z

Keywords

Navigation