Skip to main content

Advertisement

Log in

Cyclodextrin-based targeting strategies for tumor treatment

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The efficacy and applicability of anticancer drugs are greatly restricted by severe systemic toxicities and drug resistance. Targeting drug delivery strategies have been developed to prevent the shortcomings of chemotherapy. Among various approaches to specifically target drug-loaded carrier systems to the required pathological sites, ligand-attached cyclodextrin-based targeting complexes are a promising drug delivery system, which is achieved mainly through specific molecular interactions between the drugs and cell surface receptors. The principal targeting tactics include conjugation of cyclodextrin with targeting moieties or encapsulation drugs in cyclodextrins. The cyclodextrin-based supramolecules, polymers, or nanoparticles bearing bioactive substances such as folate, estrogens, carbohydrates, peptides, etc. have been reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Thun MJ, DeLancey JO, Center MM, Jemal A, Ward EM. The global burden of cancer: priorities for prevention. Carcinogenesis. 2010;31(1):100–10.

    Article  PubMed  CAS  Google Scholar 

  2. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917.

    Article  PubMed  CAS  Google Scholar 

  3. Gatenby RA. A change of strategy in the war on cancer. Nature. 2009;459(7246):508–9.

    Article  PubMed  CAS  Google Scholar 

  4. Kelloff GJ, Sigman CC. Cancer biomarkers: selecting the right drug for the right patient. Nat Rev Drug Discov. 2012;11(3):201–14.

    Article  PubMed  CAS  Google Scholar 

  5. Undevia SD, Gomez-Abuin G, Ratain MJ. Pharmacokinetic variability of anticancer agents. Nat Rev Cancer. 2005;5(6):447–58.

    Article  PubMed  CAS  Google Scholar 

  6. Wong HL, Wu XY, Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev. 2012;64(7):686–700.

    Article  PubMed  CAS  Google Scholar 

  7. Sailor MJ, Park JH. Hybrid nanoparticles for detection and treatment of cancer. Adv Mater. 2012;24(28):3779–802.

    Article  PubMed  CAS  Google Scholar 

  8. Chaudhuri P, Paraskar A, Soni S, Mashelkar RA, Sengupta S. Fullerenol-cytotoxic conjugates for cancer chemotherapy. ACS Nano. 2009;3(9):2505–14.

    Article  PubMed  CAS  Google Scholar 

  9. Zhang X, Wang C. Supramolecular amphiphiles. Chem Soc Rev. 2011;40(1):94–101.

    Article  PubMed  CAS  Google Scholar 

  10. Purkayastha P, Jaffer SS, Ghosh P. Physicochemical perspective of cyclodextrin nano and microaggregates. Phys Chem Chem Phys. 2012;14(16):5339–48.

    Article  PubMed  CAS  Google Scholar 

  11. Dahan A, Miller JM, Hoffman A, Amidon GE, Amidon GL. The solubility–permeability interplay in using cyclodextrins as pharmaceutical solubilizers: mechanistic modeling and application to progesterone. J Pharm Sci-Us. 2010;99(6):2739–49.

    CAS  Google Scholar 

  12. Loftsson T, Brewster ME. Cyclodextrins as functional excipients: methods to enhance complexation efficiency. J Pharm Sci-Us. 2012;101(9):3019–32.

    Article  CAS  Google Scholar 

  13. Ludwig JA, Weinstein JN. Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer. 2005;5(11):845–56.

    Article  PubMed  CAS  Google Scholar 

  14. Paliwal SR, Paliwal R, Agrawal GP, Vyas S. Targeted breast cancer nanotherapeutics: options and opportunities with estrogen receptors. Crit Rev Ther Drug Carrier Syst. 2012;29(5):421–46.

    Article  PubMed  CAS  Google Scholar 

  15. Kim HY, Sohn J, Wijewickrama GT, Edirisinghe P, Gherezghiher T, Hemachandra M, et al. Click synthesis of estradiol–cyclodextrin conjugates as cell compartment selective estrogens. Bioorg Med Chem. 2010;18(2):809–21.

    Article  PubMed  CAS  Google Scholar 

  16. Ohrvik VE, Witthoft CM. Human folate bioavailability. Nutrients. 2011;3(4):475–90.

    Article  PubMed  CAS  Google Scholar 

  17. Mattheolabakis G, Rigas B, Constantinides PP. Nanodelivery strategies in cancer chemotherapy: biological rationale and pharmaceutical perspectives. Nanomedicine. 2012;7(10):1577–90.

    Article  PubMed  CAS  Google Scholar 

  18. Muller C, Schibli R. Folic acid conjugates for nuclear imaging of folate receptor-positive cancer. J Nucl Med. 2011;52(1):1–4.

    Article  PubMed  Google Scholar 

  19. Clementi A, Aversa M, Corsaro C, Spooren J, Stancanelli R, O’Connor C, et al. Synthesis and characterization of a colloidal novel folic acid-β-cyclodextrin conjugate for targeted drug delivery. J Incl Phenom Macrocycl. 2011;69(3):321–5.

    Article  CAS  Google Scholar 

  20. Onodera R, Motoyama K, Arima H. Design and evaluation of folate-appended methyl-β-cyclodextrin as a new antitumor agent. J Incl Phenom Macro. 2011;70(3–4):321–6.

    Article  CAS  Google Scholar 

  21. Zhao MX, Huang HF, Xia Q, Ji LN, Mao ZW. γ-Cyclodextrin–folate complex-functionalized quantum dots for tumor-targeting and site specific labeling. J Mater Chem. 2011;21(28):10290–7.

    Article  CAS  Google Scholar 

  22. Arima H, Arizono M, Higashi T, Yoshimatsu A, Ikeda H, Motoyama K, et al. Potential use of folate-polyethylene glycol (PEG)-appended dendrimer (G3) conjugate with α-cyclodextrin as DNA carriers to tumor cells. Cancer Gene Ther. 2012;19(5):358–66.

    Article  PubMed  CAS  Google Scholar 

  23. Yao H, Ng SS, Tucker WO, Tsang YKT, Man K, Wang XM, et al. The gene transfection efficiency of a folate-PEI600-cyclodextrin nanopolymer. Biomaterials. 2009;30(29):5793–803.

    Article  PubMed  CAS  Google Scholar 

  24. Yang Y, Zhang YM, Chen Y, Zhao D, Chen JT, Liu Y. Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery. Chem Eur J. 2012;18(14):4208–15.

    Article  PubMed  CAS  Google Scholar 

  25. Zhou Q, Guo X, Chen T, Zhang Z, Shao SJ, Luo C, et al. Target-specific cellular uptake of folate-decorated biodegradable polymer micelles. J Phys Chem B. 2011;115(43):12662–70.

    Article  PubMed  CAS  Google Scholar 

  26. Harada A. Cyclodextrin-based molecular machines. Accounts Chem Res. 2001;34(6):456–64.

    Article  CAS  Google Scholar 

  27. Belitsky JM, Stoddart JF. Targeting galectin-1 with self-assembled multivalent pseudopolyrotaxanes. Frontiers in modern carbohydrate chemistry. ACS symposium series. Am Chem Soc. 2007;960:356–74.

    CAS  Google Scholar 

  28. Kauscher U, Ravoo BJ. Mannose-decorated cyclodextrin vesicles: the interplay of multivalency and surface density in lectin–carbohydrate recognition. Beilstein J Org Chem. 2012;8:1543–51.

    Article  PubMed  CAS  Google Scholar 

  29. Diaz-Moscoso A, Guilloteau N, Bienvenu C, Mendez-Ardoy A, Blanco JLJ, Benito JM, et al. Mannosyl-coated nanocomplexes from amphiphilic cyclodextrins and pDNA for site-specific gene delivery. Biomaterials. 2011;32(29):7263–73.

    Article  PubMed  CAS  Google Scholar 

  30. Mazzaglia A, Valerio A, Villari V, Rencurosi A, Lay L, Spadaro S, et al. Probing specific protein recognition by size-controlled glycosylated cyclodextrin nanoassemblies. New J Chem. 2006;30(11):1662–8.

    Article  CAS  Google Scholar 

  31. Oda Y, Yanagisawa H, Maruyama M, Hattori K, Yamanoi T. Design, synthesis and evaluation of d-galactose-β-cyclodextrin conjugates as drug-carrying molecules. Bioorg Med Chem. 2008;16(19):8830–40.

    Article  PubMed  CAS  Google Scholar 

  32. Salameh A, Lazar AN, Coleman AW, Parrot-Lopez H. Synthesis and interfacial properties of amphiphilic beta-cyclodextrins and their substitution at the O-6 position with a mono bio-recognisable galactosyl antenna. Tetrahedron. 2005;61(36):8740–5.

    Article  CAS  Google Scholar 

  33. Grunstein D, Maglinao M, Kikkeri R, Collot M, Barylyuk K, Lepenies B, et al. Hexameric supramolecular scaffold orients carbohydrates to sense bacteria. J Am Chem Soc. 2011;133(35):13957–66.

    Article  PubMed  CAS  Google Scholar 

  34. Anno T, Higashi T, Motoyama K, Hirayama F, Uekama K, Arima H. Potential use of glucuronylglucosyl-β-cyclodextrin/dendrimer conjugate (G2) as a DNA carrier in vitro and in vivo. J Drug Target. 2012;20(3):272–80.

    Article  PubMed  CAS  Google Scholar 

  35. Mujika JI, Escribano B, Akhmatskaya E, Ugalde JM, Lopez X. Molecular dynamics simulations of iron- and aluminum-loaded serum transferrin: protonation of Tyr188 is necessary to prompt metal release. Biochemistry. 2012;51(35):7017–27.

    Article  PubMed  CAS  Google Scholar 

  36. Mahon E, Salvati A, Bombelli FB, Lynch I, Dawson KA. Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery”. J Control Release. 2012;161(2):164–74.

    Article  PubMed  CAS  Google Scholar 

  37. Zhang XQ, Xu X, Bertrand N, Pridgen E, Swami A, Farokhzad OC. Interactions of nanomaterials and biological systems: implications to personalized nanomedicine. Adv Drug Deliv Rev. 2012;64(13):1363–84.

    Article  PubMed  CAS  Google Scholar 

  38. Pun SH, Tack F, Bellocq NC, Cheng JJ, Grubbs BH, Jensen GS, et al. Targeted delivery of RNA-cleaving DNA enzyme (DNAzyme) to tumor tissue by transferrin-modified, cyclodextrin-based particles. Cancer Biol Ther. 2004;3(7):641–50.

    Article  PubMed  CAS  Google Scholar 

  39. Jean C, Gravelle P, Fournie JJ, Laurent G. Influence of stress on extracellular matrix and integrin biology. Oncogene. 2011;30(24):2697–706.

    Article  PubMed  CAS  Google Scholar 

  40. Cao F, Li ZB, Lee A, Liu ZF, Chen K, Wang H, et al. Noninvasive de novo imaging of human embryonic stem cell-derived teratoma formation. Cancer Res. 2009;69(7):2709–13.

    Article  PubMed  CAS  Google Scholar 

  41. Hood JD, Bednarski M, Frausto R, Guccione S, Reisfeld RA, Xiang R, et al. Tumor regression by targeted gene delivery to the neovasculature. Science. 2002;296(5577):2404–7.

    Article  PubMed  CAS  Google Scholar 

  42. Kim EM, Jeong MH, Kim DW, Jeong HJ, Lim ST, Sohn MH. Iodine 125-labeled mesenchymal–epithelial transition factor binding peptide-click-cRGDyk heterodimer for glioma imaging. Cancer Sci. 2011;102(8):1516–21.

    Article  PubMed  CAS  Google Scholar 

  43. Miao QH, Li SP, Han SY, Wang Z, Wu Y, Nie GJ. Construction of hydroxypropyl–β-cyclodextrin copolymer nanoparticles and targeting delivery of paclitaxel. J Nanopart Res. 2012;14:1043.

    Article  Google Scholar 

  44. Tran NQ, Joung YK, Lih E, Park KM, Park KD. RGD-conjugated in situ forming hydrogels as cell-adhesive injectable scaffolds. Macromol Res. 2011;19(3):300–6.

    Article  CAS  Google Scholar 

  45. O' Neill MJ, Guo JF, Byrne C, Darcy R, O' Driscoll CM. Mechanistic studies on the uptake and intracellular trafficking of novel cyclodextrin transfection complexes by intestinal epithelial cells. Int J Pharm. 2011;413(1–2):174–83.

    Article  PubMed  Google Scholar 

  46. Diaz-Moscoso A, Vercauteren D, Rejman J, Benito JM, Mellet CO, De Smedt SC, et al. Insights in cellular uptake mechanisms of pDNA-polycationic amphiphilic cyclodextrin nanoparticles (CDplexes). J Control Release. 2010;143(3):318–25.

    Article  PubMed  CAS  Google Scholar 

  47. Mendez-Ardoy A, Guilloteau N, Di Giorgio C, Vierling P, Santoyo-Gonzalez F, Mellet CO, et al. β-Cyclodextrin-based polycationic amphiphilic “click” clusters: effect of structural modifications in their DNA complexing and delivery properties. J Org Chem. 2011;76(15):5882–94.

    Article  PubMed  CAS  Google Scholar 

  48. Guo JF, Ogier JR, Desgranges S, Darcy R, O'Driscoll C. Anisamide-targeted cyclodextrin nanoparticles for siRNA delivery to prostate tumours in mice. Biomaterials. 2012;33(31):7775–84.

    Article  PubMed  CAS  Google Scholar 

  49. Ng KK, Lovell JF, Zheng G. Lipoprotein-inspired nanoparticles for cancer theranostics. Accounts Chem Res. 2011;44(10):1105–13.

    Article  CAS  Google Scholar 

  50. Jubeli E, Moine L, Vergnaud-Gauduchon J, Barratt G. E-selectin as a target for drug delivery and molecular imaging. J Control Release. 2012;158(2):194–206.

    Article  PubMed  CAS  Google Scholar 

  51. Kang DI, Lee S, Lee JT, Sung BJ, Yoon JY, Kim JK, et al. Preparation and in vitro evaluation of anti-VCAM-1-Fab′-conjugated liposomes for the targeted delivery of the poorly water-soluble drug celecoxib. J Microencapsul. 2011;28(3):220–7.

    Article  PubMed  CAS  Google Scholar 

  52. Irizarry LR, Hambardzumyan D, Nakano I, Gladson CL, Ahluwalia MS. Therapeutic targeting of VEGF in the treatment of glioblastoma. Expert Opin Ther Targets. 2012;16(10):973–84.

    Article  Google Scholar 

  53. Prakash J, Beljaars L, Harapanahalli AK, Zeinstra-Smith M, de Jager-Krikken A, Hessing M, et al. Tumor-targeted intracellular delivery of anticancer drugs through the mannose-6-phosphate/insulin-like growth factor II receptor. Int J Cancer. 2010;126(8):1966–81.

    PubMed  CAS  Google Scholar 

  54. Jiang J, Deng LX, He LC, Liu HT, Wang CH. Expression, purification, refolding, and characterization of octreotide–interleukin-2: a chimeric tumor-targeting protein. Int J Mol Med. 2011;28(4):549–56.

    PubMed  CAS  Google Scholar 

  55. Lau SKM, Shields DJ, Murphy EA, Desgrosellier JS, Anand S, Huang M, et al. EGFR-mediated carcinoma cell metastasis mediated by integrin αvβ5 depends on activation of c-Src and cleavage of MUC1. Plos One. 2012;7(5):e36753.

    Article  PubMed  CAS  Google Scholar 

  56. Lopez-Calderero I, Chavez ES, Garcia-Carbonero R. The insulin-like growth factor pathway as a target for cancer therapy. Clin Transl Oncol. 2010;12(5):326–38.

    Article  PubMed  CAS  Google Scholar 

  57. Liu SV, Liu SS, Pinski J. Luteinizing hormone-releasing hormone receptor targeted agents for prostate cancer. Expert Opin Inv Drug. 2011;20(6):769–78.

    Article  CAS  Google Scholar 

  58. Gilyazova DG, Rosenkranz AA, Gulak PV, Lunin VG, Sergienko OV, Khramtsov YV, et al. Targeting cancer cells by novel engineered modular transporters. Cancer Res. 2006;66(21):10534–40.

    Article  PubMed  CAS  Google Scholar 

  59. Hong H, Yang K, Zhang Y, Engle JW, Feng LZ, Yang YA, et al. In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene. Acs Nano. 2012;6(3):2361–70.

    Article  PubMed  CAS  Google Scholar 

  60. David A. Carbohydrate-based biomedical copolymers for targeted delivery of anticancer drugs. Isr J Chem. 2010;50(2):204–19.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Feng Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, JJ., Zhou, ZW. & Zhou, SF. Cyclodextrin-based targeting strategies for tumor treatment. Drug Deliv. and Transl. Res. 3, 364–374 (2013). https://doi.org/10.1007/s13346-013-0140-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-013-0140-4

Keywords

Navigation