Skip to main content

Advertisement

Log in

Preparation and characterization of solid lipid nanoparticle-based nasal spray of budesonide

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The present research work was aimed at developing solid lipid nanoparticle (SLN)-based formulation of budesonide (BDS) for nasal delivery. Melt emulsification method was chosen for fabrication of BDS-SLN using ultrasound dispersion and hot high-pressure homogenization techniques. The Compritol888 ATO was chosen as the lipid component for SLN formulation due to highest solubility for BDS. Different surfactants were screened and it was found that combination of Tween 80 and plurol oleique has shown desired particle size with improved stability and entrapment efficiency. The optimized SLN composition had a particle size of 185.2 nm with polydispersibility index of 0.387. Entrapment efficiency of the SLN composition was observed to be 61 %. Further, the optimized SLN dispersion was formulated into nasal spray. In vitro permeation study was carried out using Ovis aries (Indian sheep) nasal mucosa and it was observed that the permeability of BDS nasal spray of SLN was increased significantly by 3.4-fold as compared to the plain BDS and 1.8-fold as compared to the marketed nasal formulation. Thus, SLN-based nasal drug delivery was observed to be a promising approach for improving the bioavailability of hydrophobic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee WA, Ennis RD, Longenecker JP, Bengtsson P. The bioavailability of intranasal salmon calcitonin in healthy volunteers with and without a permeation enhancer. Pharm Res. 1994;11(5):747–50.

    Article  PubMed  CAS  Google Scholar 

  2. Muller RH, Keck CM. Challenges and solutions for the delivery of biotech drugs—a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol. 2004;113(1–3):151–70.

    Article  PubMed  CAS  Google Scholar 

  3. Prego C, Garcia M, Torres D, Alonso MJ. Transmucosal macromolecular drug delivery. J Control Release. 2005;101(1–3):151–62.

    Article  PubMed  CAS  Google Scholar 

  4. Ãœner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine. 2007;2(3):289.

    Google Scholar 

  5. Weyhers H, Ehlers S, Hahn H, Souto EB, Muller RH. Solid lipid nanoparticles (SLN)—effects of lipid composition on in vitro degradation and in vivo toxicity. Pharmazie. 2006;61(6):539–44.

    PubMed  CAS  Google Scholar 

  6. Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161–77.

    Article  PubMed  CAS  Google Scholar 

  7. Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54 Suppl 1:S131–55.

    Article  PubMed  CAS  Google Scholar 

  8. Pawar SK, Vavia PR. Rice germ oil as multifunctional excipient in preparation of self-microemulsifying drug delivery system (SMEDDS) of tacrolimus. AAPS PharmSciTech. 2012;13(1):254–61.

    Article  PubMed  CAS  Google Scholar 

  9. zur Muhlen A, Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery—drug release and release mechanism. Eur J Pharm Biopharm. 1998;45(2):149–55.

    Article  PubMed  Google Scholar 

  10. Souto EB, Wissing SA, Barbosa CM, Muller RH. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int J Pharm. 2004;278(1):71–7.

    Article  PubMed  CAS  Google Scholar 

  11. Jenning V, Gysler A, Schafer-Korting M, Gohla SH. Vitamin A loaded solid lipid nanoparticles for topical use: occlusive properties and drug targeting to the upper skin. Eur J Pharm Biopharm. 2000;49(3):211–8.

    Article  PubMed  CAS  Google Scholar 

  12. Chen H, Chang X, Du D, Liu W, Liu J, Weng T, et al. Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting. J Control Release. 2006;110(2):296–306.

    Article  PubMed  CAS  Google Scholar 

  13. Liu J, Hu W, Chen H, Ni Q, Xu H, Yang X. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int J Pharm. 2007;328(2):191–5.

    Article  PubMed  CAS  Google Scholar 

  14. Wissing SA, Muller RH. The influence of solid lipid nanoparticles on skin hydration and viscoelasticity—in vivo study. Eur J Pharm Biopharm. 2003;56(1):67–72.

    Article  PubMed  CAS  Google Scholar 

  15. Souto EB, Muller RH. Lipid nanoparticles: effect on bioavailability and pharmacokinetic changes. Handb Exp Pharmacol. 2010;197:115–41.

    Article  PubMed  CAS  Google Scholar 

  16. Bondi ML, Fontana G, Carlisi B, Giammona G. Preparation and characterization of solid lipid nanoparticles containing cloricromene. Drug Deliv. 2003;10(4):245–50.

    Article  PubMed  CAS  Google Scholar 

  17. Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci. 2009;71(4):349–58.

    Article  PubMed  CAS  Google Scholar 

  18. Trotta M, Debernardi F, Caputo O. Preparation of solid lipid nanoparticles by a solvent emulsification-diffusion technique. Int J Pharm. 2003;257(1–2):153–60.

    Article  PubMed  CAS  Google Scholar 

  19. Charcosset C, El-Harati A, Fessi H. Preparation of solid lipid nanoparticles using a membrane contactor. J Control Release. 2005;108(1):112–20.

    Article  PubMed  CAS  Google Scholar 

  20. Jenning V, Lippacher A, Gohla SH. Medium scale production of solid lipid nanoparticles (SLN) by high pressure homogenization. J Microencapsul. 2002;19(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  21. Li YC, Dong L, Jia A, Chang XM, Xue H. Preparation of solid lipid nanoparticles loaded with traditional Chinese medicine by high-pressure homogenization. Nan Fang Yi Ke Da Xue Xue Bao. 2006;26(5):541–4.

    PubMed  Google Scholar 

  22. Brar P, Lee S, Lewis S, Egbuna I, Bhagat G, Green PH. Budesonide in the treatment of refractory celiac disease. Am J Gastroenterol. 2007;102(10):2265–9.

    Article  PubMed  CAS  Google Scholar 

  23. Andree H, Hilgendorf I, Leithaeuser M, Junghanss C, Holzhueter S, Loddenkemper C, et al. Enteral budesonide in treatment for mild and moderate gastrointestinal chronic GVHD. Bone Marrow Transplant. 2008;42(8):541–6.

    Article  PubMed  CAS  Google Scholar 

  24. Pedersen S, Steffensen G, Ekman I, Tonnesson M, Borga O. Pharmacokinetics of budesonide in children with asthma. Eur J Clin Pharmacol. 1987;31(5):579–82.

    Article  PubMed  CAS  Google Scholar 

  25. Kraft WK, Steiger B, Beussink D, Quiring JN, Fitzgerald N, Greenberg HE, et al. The pharmacokinetics of nebulized nanocrystal budesonide suspension in healthy volunteers. J Clin Pharmacol. 2004;44(1):67–72.

    Article  PubMed  CAS  Google Scholar 

  26. Freitas C, Muller RH. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLNTM) dispersions. Int J Pharm. 1998;168(2):221–9.

    Article  CAS  Google Scholar 

  27. Patel K, Padhye S, Nagarsenker M. Duloxetine HCl lipid nanoparticles: preparation, characterization, and dosage form design. AAPS PharmSciTech. 2012;13(1):125–33.

    Article  PubMed  Google Scholar 

  28. Canselier JP, Delmas H, Wilhelm AM, Abismail B. Ultrasound emulsification—an overview. J Dispers Sci Technol. 2002;23(1–3):333–49.

    Article  CAS  Google Scholar 

  29. Floury J, Desrumaux A, Lardieres J. Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions. Innov Food Sci Emerg Technol. 2000;1(2):127–34.

    Article  CAS  Google Scholar 

  30. Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP. Physico-chemical stability of colloidal lipid particles. Biomaterials. 2003;24(23):4283–300.

    Article  PubMed  CAS  Google Scholar 

  31. Pereswetoff-Morath L. Microspheres as nasal drug delivery systems. Adv Drug Deliv Rev. 1998;29(1–2):185–94.

    Article  PubMed  CAS  Google Scholar 

  32. Couvreur P, Puisieux F. Nano-and microparticles for the delivery of polypeptides and proteins. Adv Drug Deliv Rev. 1993;10(2–3):141–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to AICTE-NAFETIC for providing the facility to conduct the research and DBT for providing financial assistance.

Authors declare that the experiments performed for the present research work complied with the current laws of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep R. Vavia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chavan, S.S., Ingle, S.G. & Vavia, P.R. Preparation and characterization of solid lipid nanoparticle-based nasal spray of budesonide. Drug Deliv. and Transl. Res. 3, 402–408 (2013). https://doi.org/10.1007/s13346-012-0105-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-012-0105-z

Keywords

Navigation